UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604

MAY 114 2012

DATE:

SUBJECT:

Clean Air Act Inspection of Goodrich Landing Gear – Plating Operations

Cleveland, Ohio

FROM:

Virginia Palmer, Environmental Engineer

Air Enforcement and Compliance Assurance Section (MN/OH)

THRU:

Bill MacDowell, Chief WW

Air Enforcement and Compliance Assurance Section (MN/OH)

TO:

File

Date of Inspection

April 10, 2012

Attendees

Virginia Palmer, EPA, Environmental Engineer

Katharina Bellairs, EPA, Environmental Engineer

Bryan Sokolowski, Cleveland DAQ, Environmental Enforcement Specialist

Jay Finegan, Goodrich, EHS Manager

Company Description and Background

Mailing Address:

Goodrich Landing Gear, Plating Operations

2800 East 33rd Street Cleveland, Ohio 44115

Phone Number:

(216) 429-4525

Primary Contact:

Jay Finegan, EHS Manager

(216) 429-4525

Purpose of Inspection

To assist in determining compliance with rules and regulations promulgated under the authority of the Clean Air Act.

Entrance and Opening Conference Summary

We (Virginia Palmer and Katharina Bellairs of U.S. EPA) arrived at Goodrich Landing Gear's plating facility, located in Cleveland, Ohio, ("the facility" or "Goodrich Plating") at approximately 9:30 AM on April 10, 2012. We met Bryan Sokolowski, an Environmental Enforcement Specialist with the Cleveland Division of Air Quality, outside the facility on 33rd street.

We waited at the security gate, which just has an intercom, for about 30 minutes before gaining access to the facility. Upon entry we were met by Jay Finegan, the EHS Manager for Goodrich Plating, and Anthony Lombardi, a Maintenance Manager for Goodrich Plating who was acting as Plant Manager at the time.

JZ A 18 YA J

We told Mr. Finegan and Mr. Lombardi that we were there to do an unannounced inspection under the Clean Air Act and that we would do an opening conference, then a facility tour, and then have a closing conference. We were led to a Mr. Lombardi's temporary office for the opening conference. We were asked to sign-in at the receptionist's desk, which we did.

We then went into Mr. Lombari's office for the opening conference. We told them that if anything we discussed was considered confidential business information (CBI), they should let us know and we would treat it as such, and they said that they would. We asked them to give us an overview of the facility operations.

The facility representatives told us that the Goodrich Plating facility operates 3 shifts per day about 6 days per week, and employs 60 full-time employees.

Incoming parts have been coated in oil to prevent corrosion, so the first process for incoming parts is the degreaser. If the parts have been coated in heavy oil then the vapor degreaser, which uses trichloroethylene (TCE) is used, whereas if they have been coated in light oil then an aqueous solution of sodium hydroxide is used. The vapor degreaser has one refrigeration system to keep it cool. The system has two independent sections that can run simultaneously, one of which uses R-404A and the other of which uses R-507. The facility representatives explained that the current chiller had replaced an old chiller within the past year. They said that the old chiller had a diverter mode for the two sections, so that only one or the other section could be on at a time. They also said that the cadmium line has a chiller that uses R-22. However, they did not think that it was larger than 50 pounds, and they were sure that the refrigeration system for the vapor degreaser was not larger than 50 pounds. They also explained that the TCE is heated to about 185°F, but the vapor blanket over the TCE tank is cooled to less than -5°F per state regulations.

The next process is the shot peen, which is used for surface hardening. For some parts that Goodrich Plating processes, this is the only process they undergo before being sent back out as a finished product. For parts that are getting plated, the next process is "grip blast." This uses an air hose at 50 – 60 psi to spray aluminum oxide against the part and get it very clean. Once the part has gone through grip blast it needs to get coated within about 4 hours because it will start rusting very quickly when it is that clean. After that is a process called stop-off. In this area, operators use tape to cover the sections of the part that they do not want to get plated. Goodrich has chromium, nickel and cadmium plating operations. The facility operators told us that some parts will get coated with only nickel or only cadmium while some will get coated with more than both nickel and chromium (on different areas of the part), and then the parts not coated with nickel or chromium will usually get coated with cadmium. After a part is plated with nickel or chromium it will go to an oven for a bake cycle. The bake cycle typically lasts 11 – 23 hours. The oven operates at 375°F and is natural-gas-fired. The maximum temperature of the oven is 555°F – if the oven reaches this temperature, it will shut off. They ovens do not have any emission controls, but the facility representatives told us that they have mercaptan filters on the inbound side.

After nickel and chromium plating the parts go to polishing to remove excess chromium and nickel or to improve the cosmetics, and they then continue on to cadmium plating, if necessary. After cadmium plating, the parts get a final inspection and are then shipped out.

The facility representatives told us that at the time we were there, only 4 or 5 of the chromium tanks were in use, though they have 9 that are permitted. They explained that three of the tanks were empty (tanks 1, 2F and 2B) and one had been permanently converted for another use. They also have a tank 3, which was removed a long time ago and was no longer included in the permit. They also said that they have two scrubbers on the chromium tanks to control air emissions. One scrubber, called the south scrubber, was only controlling tank 7 at the time because the other tanks that it controls were not operating. The south scrubber and the tanks it controls are grouped together as Emission Unit P001 in the facility's Title V permit. They said that they aren't using all the chromium plating tanks because they had had less demand for chromium plating than in previous years, and they indicated that they were currently doing more nickel plating, though they did not expect that trend to persist. The other scrubber, the north scrubber, controls tanks 8 – 11. This system is known as Emission Unit P002 in the Title V permit. They also have two vertical composite mesh pad mist eliminators before the scrubbers.

The facility representatives told us that it had been announced that United Technologies Company was buying Goodrich and that the deal was expected to close in the fall of 2012, so they did not know how they would affect their future operations. We asked about their relationship with BF Goodrich, and they said that they had been one company in the 1980s but they split up and then Michelin bought BF Goodrich.

We were then joined by James Mihalo, a Maintenance Supervisor. We asked about performance testing on the air emission control systems for the chromium tanks. They said that they had done a test within the last week but they did not have those results back yet. Their last test on P001 had been done in January 2007, with results of 0.002 milligrams of chromium per dry standard cubic meter (mg/dscm). They said that they we operating at 2.3 inches of water during the test. We received a copy of the test report (Attachment 1). They told us that they had been maintaining the pressure drop across the scrubber at 2.3 +/- 1 inch, but since the regulations had recently changed to allow them to maintain the system at +/- 2 inches, they would comply with that requirement instead. They also told us that the results of their last test on P002 showed emissions of 0.0024 mg/dscm at 2.3 inches of water.

We asked how the facility takes its pressure drop readings and they told us that they have a computerized system that takes 5 readings each day. They said that they are going to be replacing this system with a data logger within a few months, and that the data logger would take more data points than the current system.

The facility representatives mentioned that the vapor degreaser had not been operating during Mr. Sokolowski's last inspection, and he concurred. They said that it had developed a leak so they removed the TCE until the leak could be fixed. The leak was the result of the wells becoming corroded, so the wells were replaced between July and September 2011 and the vapor degreaser restarted around November or December 2011. They said that while the vapor degreaser was not operating they used the aqueous wash to degrease all the parts, though it did not work well on the parts that had been coated with heavy oils.

We asked about the 2010 actual emissions and Mr. Sokolowski showed us that Goodrich Plating had emitted about 8.8 tons of TCE in 2010, based on use. This information was recorded in his inspection report from the previous year, which he gave us a copy of (Attachment 2). We asked how the TCE

emissions are determined and the facility representatives told us that the maintenance operators record every addition to the TCE tank. They reclaim some TCE and send it off-site as hazardous waste for processing, so they remove that amount from their calculation. When removing this amount from the amount of TCE used, they assume that 50% is TCE and 50% is sludge. They said that this is not based on a tested value but that they believe it is a conservative estimate because sometimes it is mostly TCE but they still assume it is 50% sludge and thus deduct less than they could. Also, they assume that everything that is used in the tank is emitted as organic carbon emissions. They told us that they monitor how much nickel and chromium comes in and goes into the tanks for specification and quality control purposes but they are not required to do so.

We asked for copies of quarterly deviations reports (Attachment 3) and some of the pressure drop readings data (Attachment 4). We also asked for a copy of the summary page of the 2010 annual emission report (Attachment 5). Lastly, we asked for a summary sheet of the TCE used versus the TCE taken offsite (Attachment 6).

Inspection Observations/Summary

We started the facility tour around 10:40 AM. We started in the shipping and receiving area. Nearby was also the finished parts area, which we saw. We saw the grip blast and shot peen processes. The facility representatives told us that the shot peen could be made out of various materials such as cut wire or glass balls. They said that some of the processes are manual and some are automatic.

Next we saw the ovens that are used after the part has been plated. The facility representatives told us that the ovens are needed to prevent hydrogen embrittlement after plating. Then we saw the stop-off area, which is mostly a manual process.

We proceeded to the nickel plating area. Goodrich Plating has both sulfamate nickel and electroless nickel plating. If a part is getting plating with sulfamate nickel, it first goes to a sulfuric hydrofluoric acid tank, which we saw. We also saw the sulfamate nickel tank, which uses an electric current to plate the parts. Next to the sulfamate nickel tank were the electroless nickel tanks. The facility representatives told us that the electroless nickel tanks plate everything in the tank, including the parts of the tank, so they need to be emptied and cleaned every 3 – 4 weeks with nitric acid to remove the nickel plating from the tanks. Goodrich Plating also has an "experimental" nickel plating tank, which we saw.

Next we saw the vapor degreaser. We observed the tank using the FLIR GF 320 camera as a part was loaded out of the vapor degreaser tank and did not see any escaping hydrocarbon emissions.

Next we saw the chrome plating area. We observed how tanks 8 – 11 were ducted to a common header that went off to the right, whereas tank 7 was ducted to the left. We saw the chrome rinse tanks, which were located right in front of the chrome plating tanks and were uncovered. Two of the chrome plating tanks have a sulfuric hydrofluoric acid rinse tank after the chrome rinse tank, but the other tanks do not have this step. The facility representatives explained that air is pulled to the sides of the chrome tank and then ducted to the header. We did not observe any emissions escaping from the chrome tanks, which were uncovered. We could see the mist eliminators on the ducting above the chrome tanks. We saw that Tank 11 had a hot rinse tank instead of a cold rinse tank, as the other tanks had, and we could see steam coming off the hot rinse tank.

We then went to the cadmium plating area. The facility representatives explained that the parts first go

to a water rinse and then to the titanium cadmium tank or the low-hydrogen embrittlement cadmium tank. After the cadmium plating tank the part goes to the rinse, then to a chromic acid neutralizer, then to a cold rinse, then to a chromate conversion tank, and finally to two rinse tanks, one cold and one hot. The facility representatives told us that the cadmium tanks goes to the atmosphere.

We asked about the age of the facility and were told that the scrubbers on the chrome plating tanks went in around 1993, the lower part of the nickel room went in around 2006, and the rest of the facility was probably older than the 1990s. We saw oven 1, which has a heat input capacity of 1.5 million British thermal units per hour.

Next we saw the chrome and cadmium strip tanks and the hot rinse tanks associated with those strip tanks. The facility representatives explained that those are used when the plating has to be removed. They said that the chrome strip tank uses a sodium hydroxide reverse plating process whereas the cadmium strip tank uses ammonium nitrate. At this time we saw chrome tanks 1, 2B and 2F, which are no longer chrome plating tanks according to the facility representatives. Tank 1 was empty but tanks 2B and 2F had material in them.

We then proceeded to the polish area and then saw oven 3. We asked about oven 2, and Mr. Sokolowski recalled that it had been removed in the 1990s. We were told that oven 3 is the same capacity as oven 1.

Next we saw the aqueous wash system, a drum of heavy oil, and a container of light oil. The facility representatives mentioned that they have a wastewater treatment plant on-site, so we went to look at it. They told us that if they have hexavalent chromium, they reduce it to trivalent chromium and try to remove it as a solid from the wastewater before discharging to the sewer. They also said that if they have cyanides in the water, they remove those by reducing them. They have separate tanks to treat the chromium and the cyanide. Once any chromium or cyanide has been removed, the wastewater goes to the neutralization tanks, where the pH is adjusted, and then coagulants and polymers are added and precipitated out. Lastly the wastewater goes through a filter press before it is discharged to the sewer. The solids from the filter press go through a dryer and then get sent out as hazardous waste.

We proceeded upstairs to the "rack room," where tooling is built. A small lead pot is located in this area. The pot holds about 15 pounds of lead, according to the facility representatives, and it operates batch cycles. They said that they bring in fresh lead as ingots or bars, but that they also sometimes will melt down an old part. The operator in this area opened the top of the lead pot to show us the molten lead which had a thin layer of slag over it. He pointed out the exhaust system over the lead pot and the lead mold. We saw that the ducting lead to a baghouse. The facility representatives were unsure about the maintenance schedule for the baghouse.

Lastly, we went to see the scrubbers. We saw that the pressure drop across P001 at 11:30 AM was approximately 3.8 inches of water. We saw that the pressure drop across P002 was approximately 3 inches of water. We finished the tour at approximately 11:40 AM.

Records Review and Closing Conference

We went to an office area to review some records. We reviewed the Operation and Maintenance plan for the chrome tank scrubbers and got a copy of it (Attachment 7). We also got a copy of a record of some of the instances that the north or south scrubber pressure drop deviated from its required range (Attachment 8).

While reviewing the records, Mr. Sokolowski mentioned that he had previously looked into the lead emissions from the lead pot and that they had determined that the emissions were approximately 0.002 pounds of lead per ton of lead melted, and that historically Goodrich Plating has used only about 2 tons of lead each year. He also said that they are considered a tertiary smelter. He mentioned that the facility may be subject to 40 C.F.R. Part 63, Subpart WWWWW, for Plating and Polishing Operations, but it would not be included in Goodrich Plating's Title V Permit because the State of Ohio does not have delegation over that rule. He later informed us via phone that the facility is considered a major source of hazardous air pollutants and thus is not covered by this subpart, which is only applicable to area sources.

Mr. Lombardi informed us that they process approximately 150 parts per month, in response to our earlier question about their production rate. After getting copies of the documentation we had reviewed, we returned back to Mr. Lombardi's office for the closing conference.

We started the closing conference at approximately 12:30 PM. We thanked the facility representatives for taking the time to meet with us and take us on the plant tour. We told them that we would generate an inspection report and that they could request a copy via email. We told them that they may receive a Section 114 Information Request as a follow-up to the inspection. We thanked them again for their time and left the plant at approximately 12:45 PM.

Attachments

Attachment 1: January 2007 Test Report

Attachment 2: CDAQ's January 25, 2011 Inspection Report

Attachment 3: Quarterly Deviations Reports

Attachment 4: Pressure Drop Readings

Attachment 5: 2010 Annual Emissions Report Summary

Attachment 6: TCE Used Versus Sent Off-Site

Attachment 7: Operation and Maintenance Plan for Chrome Tank Scrubbers

Attachment 8: Pressure Drop Deviations

Superior Quality Emission Testing Valid Results Guaranteed:

P.O. Box 41156 Cleveland, Ohio 44141 1-800-EPA-AIR1 www.aircomp.com testing@aircomp.com

October, 23, 2007

Greg Goga Goodrich Landing Gear-Plating Operations 2800 E 33rd St Cleveland, Ohio 44115-3602

Dear Greg

The following report provides the results of the compliance emission testing conducted on.

September 27, 2007. These results are a product of the application of the U.S. EPA Stationary
Source Sampling Methods listed in 40 CFR Part 60 Appendix A and Part 63 Appendix A that
were in effect at the time of this test:

Please mail one copy of this report along with any other supportive process operating data collected during this test to your local EPA representative within 30 days of the actual test day. You should also attach a cover letter (on company letterhead) stating the purpose and the outcome of this test. Additionally, you may address, preferably in a timetable format, any obligations or implications that might be necessary to achieve environmental compliance because of the result of this test.

Please do not hesitate to call if you have any questions or concerns about these test results. On behalf of Air Compliance Testing, I would also like to personally thank you for the opportunity to work with you on this testing project and would enjoy the opportunity to work with you again on any additional future testing projects.

Sincerely.

Phaneendra Uppalapati

Air Quality Engineer

Robert J. Lisy, Jr.

Quality Assurance Officer

Table of Contents

	Page
1.0 INTRODUCTION	2
1.1 Summary of Test Program	2
1.2 Key Personnel	2
2.0 SUMMARY AND DISCUSSION OF TEST RESULTS	3
2.1 Objectives and Test Matrix	3
2.2 Field Test Changes and Problems	3
2.3 Presentation of Results	3
3.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS	6
3.1 Process Description and Operation	6
3.2 Control Equipment Description	6
3.3 Flue Gas Sampling Locations	6
3.4 Process Sampling Location	7
4.0 SAMPLING AND ANALYTICAL PROCEDURES	12
4.1 Test Methods	12
4.2 Procedures for Obtaining Process Data	12
5.0 INTERNAL QA/QC ACTIVITIES	14
5.1 QA Audits	14
5.2 QA/QC Problems	14
6.0 APPENDIX	17

1.0 INTRODUCTION

1.1 Summary of Test Program

Goodrich Landing Gear-Plating Operations (Facility ID: 13-18-00-5949), located in Cleveland, Ohio contracted Air Compliance Testing, Inc. of Cleveland, Ohio to conduct compliance stack emission testing for their Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001) and Hard Chrome Electroplating Tanks 8 - 11 (P002). Testing was performed to satisfy the emission testing requirements pursuant to Goodrich Landing Gear-Plating Operations Ohio EPA Title V permit. The testing was performed on September 27, 2007.

Sampling was performed at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack to determine the concentration of total chromium. Testing was conducted while operating P001 and P002 at normal, maximum rectifier outputs. During this test, emissions from P001 and P002 were each controlled by individual scrubbers.

The test methods that were conducted during this test were EPA Methods 1, 2, 4, and 306.

1.2 Key Personnel

The key personnel who coordinated this test program (and their phone numbers) were:

Greg Goga, BF Goodrich Plating, 216-241-5913

David Hearne, Chief of Air Pollution Engineering Section, CDPH, 216-664-2178

Philip J. Billick, President, Air Compliance Testing, Inc. 800-372-2471

Alan C. Schreiner, Executive Vice President, Air Compliance Testing, Inc. 800-372-2471

2.0 SUMMARY AND DISCUSSION OF TEST RESULTS

2.1 Objectives and Test Matrix

The purpose of this test was to determine the concentration of total chromium at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack while operating P001 and P002 at normal, maximum rectifier outputs. Testing was performed to satisfy the emission testing requirements pursuant to Goodrich Landing Gear-Plating Operations Ohio EPA Title V permit.

The specific test objectives for this test were to:

Measure the concentration of total chromium at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack while operating P001 and P002 at normal, maximum rectifier outputs.

Measure the dry standard and actual volumetric flow rate of the stack gas at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack while operating P001 and P002 at normal, maximum rectifier outputs.

Table 2.1 presents the sampling and analytical matrix log for this test.

2.2 Field Test Changes and Problems

No field test changes or problems occurred during the performance of this test that would bias the accuracy of the results of this test.

2.3 Presentation of Results

A single sampling train was utilized during each run at each location to determine the concentration of total chromium at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack while operating P001 and P002 at normal, maximum rectifier outputs. These sampling trains measured the stack gas volumetric flow rate, moisture content, and concentration of total chromium.

Table 2.2 displays the concentraion of total chromium measured at the P001 Scrubber Exhaust Stack and at the P002 Scrubber Exhaust Stack while operating P001 and P002 at normal, maximum rectifier outputs.

			EPA TI	EST METHODS UT	ILIZED
			M1/M2 (Flow)	M4 (%H ₂ O)	M306 (Total Chromium)
Date	Run No.	Sampling Location	Sampling Time / Duration (min)	Sampling Time / Duration (min)	Sampling Time / Duration (min)
9/27/2007	1	P001 Scrubber Exhaust Stack	8:26 - 10:36 120	8:26 - 10:36 120	8:26 - 10:36 120
9/27/2007	2	P001 Scrubber Exhaust Stack	10:52 - 13:03 120	10:52 - 13:03 120	10:52 - 13:03 120
9/27/2007	3	P001 Scrubber Exhaust Stack	13:38 - 16:01 120	13:38 - 16:01 120	13:38 - 16:01 120
9/27/2007	1	P002 Scrubber Exhaust Stack	8:26 - 10:36 120	8:26 - 10:36 120	8:26 - 10:36 120
9/27/2007	2	P002 Scrubber Exhaust Stack	10:52 - 13:03 120	10:52 - 13:03 120	10:52 - 13:03 120
9/27/2007	3	P002 Scrubber Exhaust Stack	13:38 - 16:01 120	13:38 - 16:01 120	13:38 - 16:01 120

All times are Eastern Daylight Time.

Table 2.1 - Sampling and Analytical Matrix

	P001 Scrubber Exhaust Stack				P002 Scrubber Exhaust Stack			
	Run 1	Run 2	Run 3	Average	Run 1	Run 2	Run 3	Average
Total Chromium Concentration (mg/dscm)	0.0020	0.0024	0.0017	0.0020	0.0027	0.0021	0.0025	0.0024
Stack Gas Average Flow Rate (acfm)	35,487	35,703	35,722	35,637	35,852	35,429	35,156	35,479
Stack Gas Average Flow Rate (scfm)	34,019	34,169	34,201	34,130	34,241	33,902	33,642	33,928
Stack Gas Average Flow Rate (dscfm)	33,199	33,398	33,446	33,347	33,346	33,077	32,858	33,094
Stack Gas Average Velocity (fpm)	2,848	2,865	2,867	2,860	2,907	2,873	2,851	2,877
Stack Gas Average Static Pressure (in-H ₂ O)	-0.40	-0.55	-0.51	-0.48	-0.29	-0.33	-0.31	-0.31
Stack Gas Average Temperature (°F)	75	76	76	76	78	77	77	77
Stack Gas Percent by Volume Moisture (%H ₂ O)	2.41	2.26	2.21	2.29	2.61	2.43	2.33	2.46
Measured Stack Inner Diameter (in)*	47.80	47.80	47.80	47.80	47.5 x 47.6	47.5 x 47.6	47.5 x 47.6	47.5 x 47.6

^{*}The P002 Scrubber Exhaust Stack was elliptical in shape

Table 2.2 - Emission Results

3.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

3.1 Process Description and Operation

BF Goodrich Landing Gear-Plating Operations is a manufacturing plant specializing in Aircraft Components & Supplies. Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001) and Hard Chrome Electroplating Tanks 8 - 11 (P002) were in operation during the performance of this test event.

Figures 3.1 and 3.2 depict the process schematic.

3.2 Control Equipment Description

During this test, emissions from P001 and P002 were each controlled by individual scrubbers.

3.3 Flue Gas Sampling Locations

3.3.1 - P001 Scrubber Exhaust Stack

The P001 Scrubber Exhaust Stack had a measured inner diameter of 47.8-inches, was oriented in the vertical plane, and was accessed from a temporary scaffolding arrangement. Two (2) 3.5-inch I.D. sampling ports were located 90° apart from one another at a location that met EPA Method 1, Section 11.1.1 criteria. Prior to emissions sampling, the stack was traversed to verify the absence of cyclonic flow. An average yaw angle of 15.42° was measured. Therefore, the sampling location also met EPA Method 1, Section 11.4.2 criteria. During emissions sampling, the stack was traversed for stack gas volumetric flow rate, moisture content, and total chrome concentration determination.

3.3.2 - P002 Scrubber Exhaust Stack

The P002 Scrubber Exhaust Stack was elliptical in shape with measured inner diameters of 47.5-inches and 47.6-inches. The stack was oriented in the vertical plane and was accessed from a temporary scaffolding arrangement. Two (2) 3.5-inch l.D. sampling ports were located 90° apart from one another at a location that met EPA Method l, Section 11.1.1 criteria. Prior to emissions sampling, the stack was traversed to verify the absence of cyclonic flow. An average yaw angle of 14.63° was measured. Therefore, the sampling location also met EPA Method l, Section 11.4.2 criteria. During emissions sampling, the stack was traversed for stack gas volumetric flow rate, moisture content, and total chrome concentration determination.

Figures 3.3 and 3.4 schematically illustrate the traverse point and sample port locations utilized.

3.4 Process Sampling Location

The EPA Reference Test Methods performed did not specifically require that process samples were to be taken during the performance of this testing event. It is in the best knowledge of Air Compliance Testing that no process samples were obtained and therefore no process sampling location was identified in this report.

See Goodrich Landing Gear-Plating Operations personnel for any process sampling locations which may have been utilized unknowingly to Air Compliance Testing, Inc. during this testing event.

Test Date: September 27, 2007

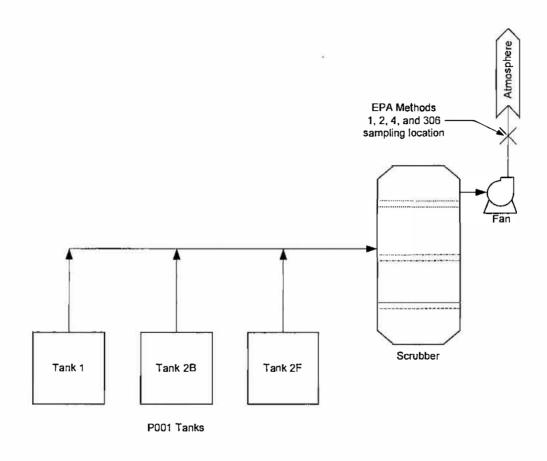


Figure 3.1 - Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001)
Process Schematic

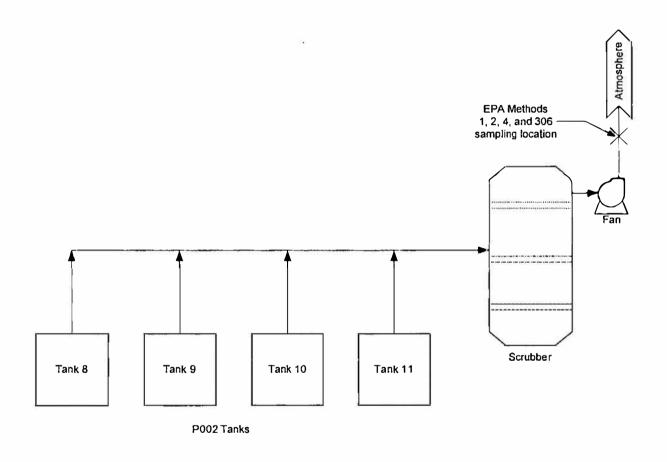


Figure 3.2 - Hard Chrome Electroplating Tanks 8 - 11 (P002) Process Schematic

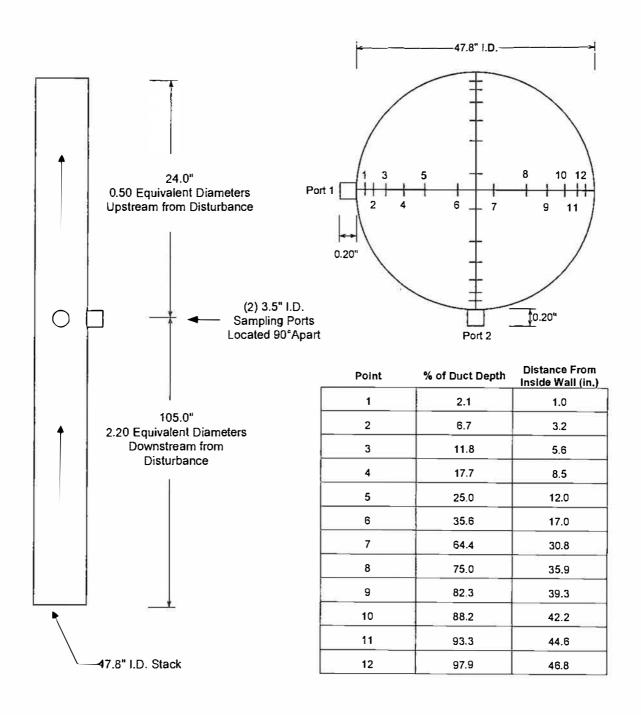


Figure 3.3 - P001 Scrubber Exhaust Stack Traverse Point Location Drawing

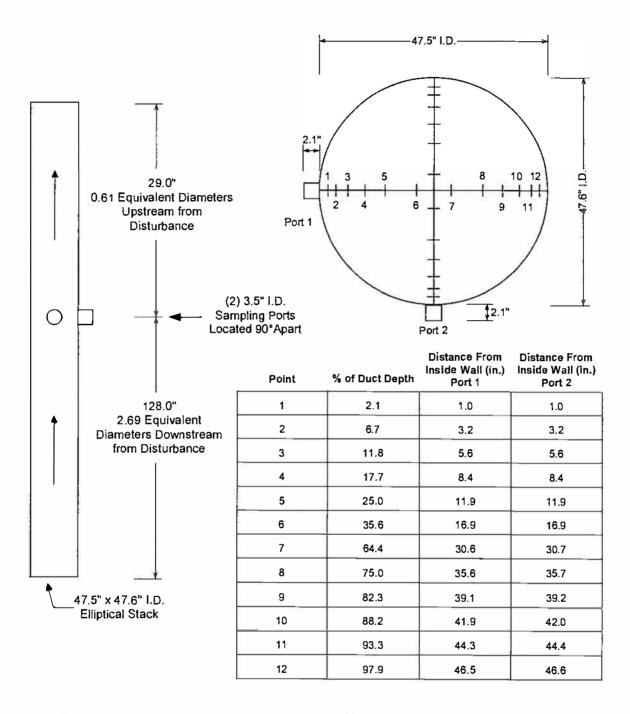


Figure 3.4 - P002 Scrubber Exhaust Stack Traverse Point Location Drawing

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Test Methods

4.1.1 EPA Method 1: Sample and Velocity Traverses for Stationary Source

Principle: To aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source, a measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. A traverse point is then located within each of these equal areas. This method was utilized in its entirety as per the procedures outlined in 40 CFR Part 60, Appendix A.

- 4.1.2 EPA Method 2: Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S) Principle: The average gas velocity in a stack is determined from the gas density and from measurement of the average velocity head with a Type S (Stausscheibe or reverse type) pitot tube. This method was utilized in its entirety as per the procedures outlined in 40 CFR Part 60, Appendix A.
- 4.1.3 EPA Method 4: Determination of Moisture Content in Stack Gases
 Principle: A gas sample is extracted at a constant rate from the source; moisture is removed from the sample stream and determined either volumetrically or gravimetrically. This method was utilized in its entirety as per the procedures outlined in 40 CFR Part 60, Appendix A.
- 4.1.4 EPA Method 306: Determination of Chromium Emissions from Decorative and Hard Chromium Electroplating and Anodizing Operations

Principle: Emissions are collected from the source by using a Method 5 sampling train (40 CFR Part 60, Appendix A), with the filter omitted and a glass nozzle and probe liner. The chromium emissions are collected in an alkaline solution: 0.1N sodium hydroxide (NaOH) or 0.1 N sodium bicarbonate (NaHCO3). The collected samples remain in the alkaline solution until analysis. The chromium sample is analyzed using inductively coupled plasma emission spectrometry (ICP) at 267.72 nm. Alternatively, if improved detection limits are required, a portion of the alkaline impinger solution is digested with nitric acid and analyzed by graphite furnace atomic absorption spectroscopy (GFAAS) at 357.9 nm. This method was utilized in its entirety as per the procedures outlined in 40 CFR Part 63, Appendix A.

The sampling train utilized during this testing project is depicted in Figure 4.1.

4.2 Procedures for Obtaining Process Data

Process data was recorded by Goodrich Landing Gear-Plating Operations personnel utilizing their typical record keeping procedures. Recorded process data was provided to Air Compliance Testing, Inc. personnel at the conclusion of this test event. The process data is located in the Appendix.

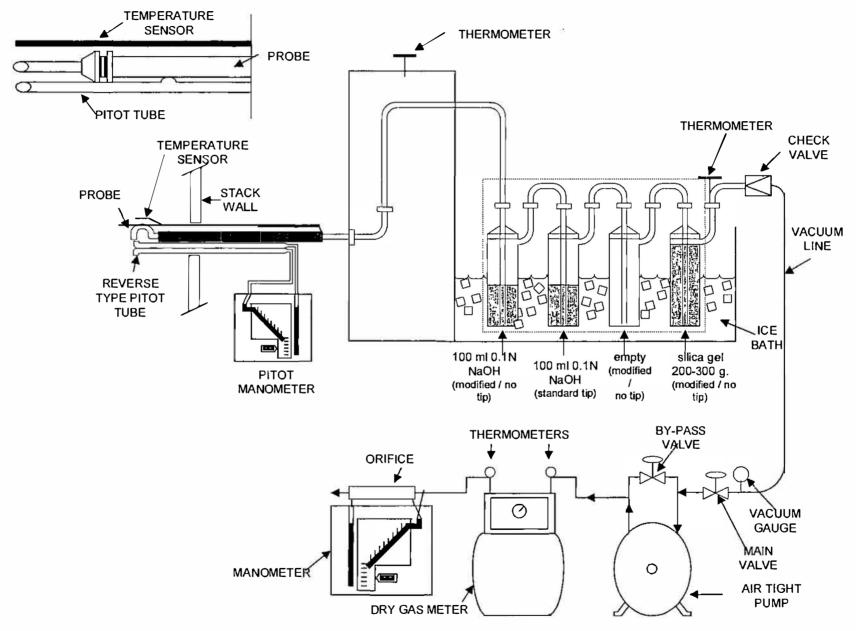


Figure 4.1 - EPA Method 306 Sampling Train Schematic

Page 13

5.0 INTERNAL QA/QC ACTIVITIES

5.1 QA Audits

Tables 5.1 and 5.2 illustrate the QA audit activities that were performed during this test.

All meter boxes and sampling trains used during sampling performed within the requirements of their respective methods as is shown in Tables 5.1 and 5.2. All pre-test and post-test leak checks were well below the applicable limit. Minimum metered volumes and percent isokinetics were also met where applicable.

5.2 QA/QC Problems

No QA/QC problems occurred during this test event.

	P001	Scrubber Exhaust S	Stack	
Method 306 Sampling Train	Run 1	Run 2	Run 3	
Leak Rate Observed (Pre/Post) (cfm)	0.001 / 0.001	0.001 / 0.000	0.001 / 0.001	
Applicable Method Allowable Leak Rate (cfm)	< 0.020	< 0.020	< 0.020	
Acceptable	Yes	Yes	Y es	
Volume of Dry Gas Collected (dscf)	79.946	81,456	78.932	
Recommended Volume of Dry Gas Collected (dscf)	60.000	60.000	60.000	
Acceptable	Yes	Yes	Yes	
Percent of Isokinetic Sampling Rate (%)	97.4	95.1	95.4	
Applicable Method Allowable Isokinetic Sampling Rate (%)	100 ± 10	100 ± 10	100 ± 10	
Acceptable	Yes	Yes	Yes	

	P002	P002 Scrubber Exhaust Stack			
Method 306 Sampling Train	Run 1	Run 2	Run 3		
Leak Rate Observed (Pre/Post) (cfm)	0.001 / 0.001	0.003 / 0.003	0.002 / 0.001		
Applicable Method Allowable Leak Rate (cfm)	< 0.020	< 0.020	< 0.020		
Acceptable	Yes	Yes	Yes		
Volume of Dry Gas Collected (dscf)	76.594	78.143	76.110		
Recommended Volume of Dry Gas Collected (dscf)	60.000	60.000	60.000		
Acceptable	Yes	Yes	Yes		
Percent of Isokinetic Sampling Rate (%)	95.4	99.0	96.2		
Applicable Method Allowable Isokinetic Sampling Rate (%)	100 ± 10	100 ± 10	100 ± 10		
Acceptable	Yes	Yes	Yes		

Table 5.1 - EPA Method 306 Sample Train Audit Results Table

	P001	Scrubber Exhaust S	Stack	
Pre-Test Dry Gas Meter Calibration Factor (Y)	Average Post-Test Dry Gas Meter Calibration Check Value (Yqa)	Post Test Dry Gas Meter Calibration Check Value Difference From Pre- Test Calibration Factor (%)	Applicable Method Allowable Difference (%)	Acceptable
1.0154	1.0483	3.24%	5.00%	Yes

	P002	Scrubber Exhaust	Stack	
Pre-Test Dry Gas Meter Calibration Factor (Y)	Average Post-Test Dry Gas Meter Calibration Factor (Y)	Post Test Dry Gas Meter Calibration Factor Difference From Pre-Test Calibration Factor (%)	Applicable Method Allowable Difference (%)	Acceptable
0.9957	0.9956	-0.01%	5.00%	Yes

Table 5.2 - EPA Method 306 Dry Gas Meter Audit Results Table

6.0 APPENDIX

Appendix attached.

APPENDIX

to Compliance Stack Emission Test Report

Determination of Total Chromium Emissions

Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001) and Hard Chrome Electroplating Tanks 8 - 11 (P002)

EPA Methods 1, 2, 4 and 306

Goodrich Landing Gear-Plating Operations

Cleveland, Ohio

Date Conducted: September 27, 2007 Job Number: 070920

Prepared by:

Air Compliance Testing, Inc.

PO Box 41156 Cleveland OH 44141-0156 Phone: (800) EPA-AiR1 (372-2471)

Report Date: October 23, 2007

_	North Scrubber	South Scrubber
	Stack	Stack
	(amp-hour)	(amp-hour)
Run 1	1065.31	2668.03
Run 2	276.28	0.00
Run 3	542.97	6466.90

(4)

First Analytical Laboratories ANALYSIS REPORT

Method 306; Total Chromium

Project # 070920

Prepared for:

Air Compliance Testing 5525 Canal Road Valley View, OH 44125

Reviewed and Approved by:

William H. Wadlin, Ph. D. Laboratory Manager

October 4, 2007

Do not reproduce this report except in whole without the permission of the laboratory.

First Analytical Laboratories

CASE NARRATIVE

Project #: 71001 Report Date: 04-Oct-07

Client: Air Compliance Testing

Client Project ID: 070920

Samples:

Seven samples were submitted for determination of total chromium by Method 306. One of these was the blank. All of the samples were received in good condition, with no apparent leakage. The remaining amounts of the samples and digestates will be retained by the laboratory for six months and then discarded.

Preparation:

The samples were prepared and analyzed according to EPA Method 306, Determination of Chromium Emissions from Decorative and Hard Chromium Electroplating and Anodizing Operations. A lab blank, a pre-digestion spike and a pre-digestion duplicate were prepared along with the samples.

Analysis:

Total chromium was determined by Graphite Furnace Atomic Absorption Spectrophotometry (GFAA).

Results:

The results are presented as total micrograms of chromium present in the whole sample indicated. Chromium was measurable in all of the runs, and ranged from about $4 \mu g$ to $6 \mu g$.

Quality Control:

Chromium was detected in the blank, which is not unusual. In this case the results should be blank corrected, since the sample levels are so low that the blank level is significant compared to them. The spike recovery (99%) was within the normal range of 75% to 125%. The deviation of the prepared duplicate pair was 1.2% which is well within the normal limit of 20%. All of the digestates were analyzed in duplicate.

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27517

Tel. (919) 942-8607 FAX (919) 929-8688 www.firstanalyticallabs.com

ANALYSIS REPORT

Project #: 71001

Report Date: 04-Oct-07

Client: Air Compliance Testing, Inc.

Date Received: 02-Oct-07

Client Project: 070920

Total Micrograms in Sample

Sample	Cr
	μg
070020A BI	1.5
070920A-BL	
070920A-1	4.5
070920A-2	5.5
070920A-3	3.9
070920B-1	6.0
070920B-2	4.6
070920B-3	5.4

QC SUMMARY

Spike, %Recovery	7.8%	99%
Duplicate, RPD		1.2%

C H R O M I U M GFAA ANALYSIS RUN SUMMARY AND CALCULATION WORKSHEET

Client: Air Compiance Testing, Inc. MDL = $5 \mu g/L$ Proj. #: 71001 Predig'n spike conc. = $100 \mu g/L$

Date: 04-Oct-07

Sample ID)	Test	Dig'te		Di l 'n	Total	Volume	
Client	FAL	Soľn	Conc	FV	Factor	Volume	Dig'd	Total
		μ g/L	μ g/L	∞ ml		ml	ml	$\mu_{ extsf{g}}$
070920A-BL	71001.B	5.9	5.9	50	1	500	100	1.5
070920A-1	71001.A1	18.7	18.7	50	1	477	100	4.5
070920A-2	71001.A2	23.3	23.3	50	1	475	100	5.5
070920A-3	71001.A3	16.5	16.5	50	1	474	100	3.9
070920B-1	71001.B1	25.0	25.0	50	1	477	100	6.0
070920B-2	71001.B2	19.4	19.4	50	1	476	100	4.6
070920B-3	71001.B3	22.7	22.7	50	1	474	100	5.4
Bench Spike(50)	71001.B1S	71.7				% REC =	93.4%	
Spike	71001.A1S	117.4				% REC =	98.7%	
Duplicate Duplicate	71001.B1D	25.3				% RPD =	1.2%	

Calibration Da	ta	Irue conc.		
		μ_{g}/L	Abs.	Corr. Coeff.
	Blank	0.0	0.000	0.9996
	Standard 1	10	0.138	
	Standard 2	20	0.285	Inst: B
	Standard 3	50	0.684	₩.
	Standard 4	100	1.328	
Calibration Veri	fications			
	ICV = 50	53.4	CCV2 = 50	51.4
	ICB = 0	0.9	CCB2 = 0	1.6
	CCV1 = 50	53.7		
	CCB1 = 0	1.8		

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27514 Tel. (919) 942-8607 FAX (919) 929-8688

-71091

Air Compliance Testing Project # 070920	\neg
Date Shipped: 10/1/2007	\Box
]
Shipper: UPS	
Airbill #:	\neg

P.O. # 227

~070920A____

Page: 1 of 2

Chain of Custody Record

Sample#	Run#	Contnr. #	Matrix	Comments
			-	Analyze all samples for total Cr
∂¥				as per Section 11.0 of
-	-			U.S. EPA Method 306
0700004 4 88200/50			225.4 ml .1N NaOH /	Split from 450.8 ml .1N NaOH / 26.2 ml H2O
070920A - 1 - M306/SR	1	1	13.1ml H2O	
070920A - 2 - M306/SR	2	1	225.3 ml .1 N NaOH /	Split from 450.6 ml .1N NaOH / 24.4 ml H2O
			12.2 ml H2O	
OTOGOGA 2 Magazin		1	225.4 ml .1N NaOH /	Split from 450.7 ml .1N NaOH / 23.3 ml H2O
070920A - 3 - M306/SR	3		11.7 ml H2O	
050933 - BL - M306/SR	BL	2	250 ml .1N NeOH	Split from 500ml .1N NaOH
				Notes: If questions contact:
Received By:	135	70.300	Date:	Tate Strickler 216.525.0900 x 235
_	But A	Th, W	9/2010	or - Rob Lisy 216.525.0900 x 232
Milany FAL			10/2/07	

Job Number:_	
Date:	9/20/07
Checked By:	75

First Analytical Laboratories 1126 Burning Tree Dr. Chapel Hill, NC 27514 Tel. (919) 942-8607 FAX (919) 929-8688

-710**01**

Air Compliance Testing Project # 070920	\Box
Date Shipped: 10/1/2007	
Shipper: UPS	
Airbill #:	

P.O. # 227

Page: 2 of 2

Chain of Custody Record

Sample#	Run#	Contnr. #	Matrix	Comments					
				Analyze all samples for total Cr					
				as per Section 11.0 of					
				U.S. EPA Method 306					
07000D 4 M0000D			225,2 ml .1N NaOH /	Split from 450.3 ml .1N NaOH / 26.7 ml H2O					
070920B - 1 - M308/SR	1	1	13.4ml H2O						
			225.1 ml .1N NaOH /						
070920B - 2 - M306/SR	2	1	12.9 mt H2O	Split from 450.2 ml .1N NaOH / 25.8 ml H2O					
			225.2 mt .1N NaOH /	Solit from 450.4 ml 4N NoOU / 22.5 ml U2O					
070920B - 3 - M306/SR	3	1	11.8 ml H2O	Split from 450.4 ml .1N NaOH / 23.6 ml H2O					
				*					
			ž						
				Notes: If questions contact:					
Received By:	Relinguis	shed By:	Date:	Tate Strickler 216.525.0900 x 235 or - Rob Lisy 216.525.0900 x 232					
A	ati	Angle!	gralo						
M. Bary FAL			10/2/07						

Job Number: 070720

Date: 9/28/07

Checked By: 75

Method 306 Record of Custody Sheet

ansportation Container Numb	per .	3			-/1091	
gent Tray Number		3				
	П	-	1			Fina
Seal I.D. no.		Full Signature	Date	Time	Reason for Breaking Seal	Vol. m
070920 A - 1 - M306/SR	B	Of Ada	4-12-02	17:33	1	476
-	В	Int Stroble	9/2907	0912	239/477	
	s	fit Africks	graso	0950	< 1, 11st	
	В	111	•		Semple Aflet	
070920 A - 2 - M306/SR	6	LAA	9.27.07	1434	- 1	474
010020 A - 2 - 111000,01(В	Set Along C. L	42807	0915	232/475	
	s	Jute Striks	9/18/07	0950	C - 11 100°4	
	В	11			Sangle split	
OZOGO A 2 NACESTO	18	/LXX	9-27-07	16:37	0.0-1.	473
070920 A - 3 - M306/SR	В	Date Shall	9/28/07	8926	237/474	/ ′ ′
	s	Int Start	9/24/07	0950	Sough spet	\top
	В	4.4	1		Sough Agen	r.
M306/BL	S	KAZ	9.27.07	12:36	/	50
070920 A - BL - M306/SR-	В	20 No. 15	9/28/01	0929	280/800	
	s	2t 15/11	9/29/07	8950	0 1 101-1	+-
	В	700 70, 000	110901	0130	Sough Aflit	
	s		1			+-
	$\overline{}$		1			
	B		1			+
	S		-			1
	В		-			+
	S	_	1			1
	В					
	s		ļ			
	В	-				↓
	s					
	В					
	s					
	В					
				2		
ere ali seals intact?Yes		_No (Describe seal and reasoning	ng in the "Rem	arks")		
		els?YesNo (Estir	_		(
ceived By Sample Custodia						
,,	-	(Full Signature)	- 1	(Date)	(Time)	_
Remarks:		(. a e.g. atalo)		(= 4.0)	(11110)	
Nemajks.	-					
•	_					

Method 306 Record of Custody Sheet

Transportation Container Num	ber ,	6	_	e e	-710 9 1	1
gent Tray Number	-	3				ı
0110	П	4 Full Clamph T	Data	Time	Decree for Procking Cook	Fina! Vol. mL
Seal I.D. no.	B	7 Full Signature	9.27.07	Time	Reason for Breaking Seal	476.7
070920 B - 1 - M306/SR	100		9/2007	11:48	220/100	10,,
	В	71 11	9/19/07		238/477 Smile Alit	_
	S	dat Alexon	4/1001	0952	Sarafle Ald	
	В	M.A.L	4.27.07	14:57		11750
070920 B - 2 - M306/SR	S	1) + 11-11	ghalon		729/471	475-8
	В	1 - A 11)	1	0940	230/110	
	S	modulo	त्रीधीन	0852	South Solit	
	B	11.11-	9-27-07	ا مداص	238/476 Sample Split 237/474 Sample Split	
070920 B - 3 - M306/SR	8	0+11-11		17:02	237/474	4736
	В	0 to 11 /2	9/28/en	0944		-
	S	and may	Made	0952	Sample split	
	В			-		1
070920 B - BL - M306/SR	S			-		
	В		-			-
	S					
	В		_			+(
	S		-			
	В		-			-
	S					1
	В	<u> </u>				1
	S					1
	В					
	S					
	В			ž.		
	s					
	В				<u> </u>	
	s				- 0	
	В					
Were all seals intact?Yes		_No (Describe seal and reasoning	ng in the "Rem	arks")		
Were all liquid levels at marked	d leve	els?YesNo (Estir	nate loss in th	e "Rema r ks")		
Received By Sample Custodia	n 。		_			
		(Full Signature)		(Date)	(Time)	
Remarks:	65					

Job Number: 070920 B

Done By / Date: 1 9-11-07

Final Check By / Date: 7 1 9 / 20/07

FROM:

10 LBS 1 OF 1

TATE STRICKLER (216) 525-0900 257 AIR COMPLIANCE TESTING INC PO BOX 41156

LEVELAND OH 44141

-71001

SHIP TO:

WILLIAM WADLIN
(919) 942-8607
FIRST ANALITICAL LABORATORIES
1126 BURNING TREE DR.
CHAPEL HILL NC 27517-4004

NC 275 4-01

UPS NEXT DAY AIR

TRACKING #: 1Z FR8 740 01 4157 8157

1

REF 1:070920

BILLING: P/P

HAZARDOUS MATERIALS - AIR ELIGIBLE

HAZ#: NaOH

WS 8.0.49 Canon iP1700 89.0A 07/2007

Fold here and place in label pouch

Sample_ID	EL	Sam_Date	Sam_Time	Mean_Sig	Mean_ST	Cal_Units	Dilu	Rec	Std_U	Std_U 2	RSD
Calib Blank	Cr	04-Oct-07	8:59:33	0.0000		μg/L					18192.00
10 ppb Cr	Cr	04-Oct-07	9:07:35	0.1378		μg/L					0.83
20 ppb Cr	Cr	04-Oct-07	9:15:41	0.2849		μg/L					0.76
50 ppb Cr	Cr	04-Oct-07	9:23:45	0.6843		$\mu_{ extsf{g}}/ extsf{L}$					0.80
100 ppb Cr	Cr	04-Oct-07	9:31:52	1.3284		$\mu_{ extsf{g}}/ extsf{L}$					0.02
ICV	Cr	04-Oct-07	9:40:50	0.7160	53.441	μg/L			52.84	54.041	1.59
ICB	Cr	04-Oct-07	9:48:41	0.0124	0.922	μg/L			1.67	7 0.167	115.80
71001.LB	Cr	04-Oct-07	9:56:34	0.0016	0.121	μg/L			0.209	0.033	103.30
71001.LCS	Cr	04-Oct-07	10:04:29	0.7306	54.533	$\mu_{ extsf{g}}/ extsf{L}$			53.55	55.516	2.55
71001.B	Cr	04-Oct-07	10:12:20	0.0792	5.908	μ g/L			6.67	5.144	18.29
71001.A1	Cr	04-Oct-07	10:16:14			μ g/L .	20		1.27	5	
71001.A1	Cr	04-Oct-07	10:26:13	0.2506	18.706	μg/L			18.81	18.600	0.80
71001.A1\$	Cr	04-Oct-07	10:34:06	0.7862	58.677	μg/L	2		58.66	58.694	0.04
71001.A2	Cr	04-Oct-07	10:42:01	0.3122	23.300	μg/L			23.39	7 23.202	0.59
71001.A3	Cr	04-Oct-07	10:49:58	0.2211	16.500	μg/L			17.17	15.825	5.78
71001.B1	Cr	04-Oct-07	10:57:58	0.3349	24.995	μg/L			24.90	25.091	0.54
71001.B1	Cr	04-Oct-07	11:06:10	0.9609	71.717	μg/L	9	3.44	71.02	72.409	1.36
CCV	Cr	04-Oct-07	11:14:10	0.7197	53.717	μg/L			53.97	53.463	0.67
CCB	Cr	04-Oct-07	11:22:02	0.0244	1.822	$\mu_{ extsf{g}}/ extsf{L}$			2.17	1.469	27.43
71001.B1D	Cr	04-Oct-07	11:29:58	0.3388	25.287	μg/L			25.19	5 25.378	0.51
71001.B2	Cr	04-Oct-07	11:38:03	0.2602	19.423	μg/L			19.61	19.233	1.38
71001.B3	Cr	04-Oct-07	11:46:10	0.3044	22.716	$\mu_{ extsf{g}}/ extsf{L}$			22.55	4 22.879	1.01
CCV	Cr	04-Oct-07	11:54:14	0.6883	51.376	μg/L			51.39		0.04
CCB	Cr	04-Oct-07	12:02:05	0.0213	1.593	μg/L			2.33	0.847	66.20

TEST DATA

Number of Test Runs	3			
Traverse Points	24			
	Run 1	Run 2	Run 3	<u>Average</u>
Stack Cross-Sectional Diameter 1 (circular) (in)	47.80	47.80	47.80	47.80
Stack Cross-Sectional Diameter 2 (circular) (in)	47.80	47.80	47.80	47.80
Pitot Tube Coefficient (Cp)	0.84	0.84	0.84	0.84
Barometric Pressure at Ground Level (Pbar) (in Hg) Elevation Difference Between Ground Level and Meter Box Locations (ft)	29.17 57.00	29.17 57.00	29.17 57.00	29.17 57.00
Elevation Difference Between Ground Level and Sampling Locations (ff)	57.00	57.00	57.00	57.00 57.00
Initial Dry Gas Meter Reading (ft3)	418.805	500.510	583.773	31.00
Final Dry Gas Meter Reading (ft3)	500.400	583.665	664.635	
Dry Gas Meter Calibration Factor (Gamma)	1.0154	1.0154	1.0154	1.0154
Dry Gas Meter Calibration Coefficient (Delta H@)	1.822	1.822	1.822	1.822
Total Sampling Run Time (Theta) (min)	120	120	120	120
Volume of Water Vapor Condensed in the Impingers (g)	26.2	24.4	23.3	24.6
Weight of Water Vapor Collected in Silica Gel (g)	15.7	15.5	14.5	15.2
Average Pitot Rotation Angle Port Number 1	15.3			
Port Number 2	15.6			
<u></u>				
* Test Run Start Time (hrmin)	8:26	10:52	13:38	
Test Run Stop Time (hrmin)	10:36	13:03	16:01	
DETAILED RESULTS				
Stack Gas Conditions	D 4	Burn 0	Dec 2	A
	<u>Run 1</u> 12.462	Run 2 12.462	<u>Run 3</u> 12,462	<u>Average</u> 12.462
Stack Cross-Sectional Area (A) (ft2) Barometric Pressure at Sampling Location (in Hg)	29.12	29.12	29.12	29.12
Dry Molecular Weight of Stack Gas (Md) (Ib/lb-mole)	29.00	29.00	29.00	29.00
Wet Molecular Weight of Stack Gas (Ms) (lb/lb-mole)	28.73	28.75	28.76	28.75
Average Absolute Stack Gas Pressure (Ps) (in Hg)	29.09	29.07	29.08	29.08
Average Stack Gas Static Pressure (ps) (in H2O)	-0.40	-0.55	-0.51	-0.48
Average Stack Gas Temperature (ts) (°F)	75.4	76.1	76.0	75.8
Average Stack Gas Temperature (Ts) (°R)	535.4	536.1	536.0	535.8
Average Stack Gas Velocity (Vs) (fl/sec)	47.46	47.75	47.78	47.66
Average Stack Gas Velocity (Vs) (ft/min)	2,848	2,865	2,867	2,860
Wet Volumetric Stack Gas Flow at Actual Conditions (Qaw) (acfm)	35,487	35,703	35,722	35,637
Wet Volumetric Stack Gas Flow at Standard Conditions (scfm)	34,019	34,169	34,201	34,130
Dry Volumetric Stack Gas Flow at Standard Conditions (Qstd) (dscfm)	33,199	33,398	33,446	33,347
Percent by Volume Moisture as measured in Stack Gas (%H2O)	2.41	2.26	2.21	2.29
Test Results				
Volume of Dry Gas Sampled at Standard Conditions (Vmstd) (dscf)	79.946	81.456	78.932	80.11 1
Rate of Dry Gas Sampled at Standard Conditions (dscfm)	0.666	0.679	0.658	0.668
Predicted 1-Hour Sample Volume Based on Current Sampling Rate (dscf)	39.973	40.728	39.466	40.056
Dry Mole Fraction of Flue Gas (Mfd) (1-bw/100)	0.976	0.977	0.978	0.977
Average Velocity Pressure (Delta P) (in H2O)	0.6900	0.6967	0.6983	0.6950
Average Square Root of Delta P	0.8257	0.8303	0.8310	0.8290
Average Pressure Differential of Orifice Meter (Delta H) (in H2O) Average DGM Temperature (tm) (°F)	1.5575	1.6525	1.5858	1.5986
Average Dry Gas Meter Temperature (Im) (r) Average Dry Gas Meter Temperature (Tm) (°R)	74.563	74.813	76.604	75.326
Volume of Metered Gas Sample (Vm) (dry) (acf)	534,563 81,595	534.813 83.155	536.604 80.862	535.326 81.871
Post-Test Calibration (Yqa)	1.0376	1.0488	1.0584	1.0483
Post-Test/Pre-Test Calibration Factor Difference (%)	-2.18	-3.29	-4.24	-3.24
. ,				
SAMPLING QA				
Current Predicted Allowable Post-Test Leak Rate (dscfm)	0.020	0.020	0.020	0.020
Current Sampling Rate Status	ОК	OK	OK	
Probe Nozzle Diameter (in)	0.217	0.221	0.217	0.218
Percent Isokinetic of Sampling Rate (% I)	97.4	95.1	95.4	96.0
In Field Isokinetic QA	GOOD	GOOD	GOOD	
Count of Velocity Pressure Readings Below 0.05 in H2O	0	0	0	0
Sensitivity Factor for Differential Pressure Gauge (T)	1.004	1.004	1.004	1.004
Is Meter Box Manometer Adequate (Yes / No)?	YES	YES	YES	

Test Date: September 27, 2007

MEASURED DATA FROM TEST RUNS

		Run	Pitot	Square	Orifice	DGM	DGM	Average	Stack	
Point		Time	Delta P	Root of		Temp IN	Temp	DGM	Pressure	Stack
Count	Run#	(min)	(in H2O)	Delta P	(in H2O)	(°F)	OUT (°F)	Temp (°F)		Temp (°F)
1	1	Ó	0.80	0.894	1.80	69	68	68.50	-0.80	75
2	1	5	0.90	0.949	2.00	79	69	74.00	-0.25	74
3	1	10	0.93	0.964	2.10	80	70	75.00	-0.50	74
4	1	15	0.93	0.964	2.10	81	71	76.00	-0.38	75
5	1	20	0.89	0.943	2.00	83	71	77.00	-0.34	77
6	1	25	0.74	0.860	1.70	83	72	77.50	-0.32	78
7	1	30	0.45	0.671	1.00	82	72	77.00	-0.32	78
8	1	35	0.52	0.721	1.10	82	72	77.00	-0.29	75
9	1	40	0.54	0.735	1.20	81	73	77.00		74
10	1	45	0.53	0.728	1.20	80	73	76.50	.8	75
11	1	50	0.50	0.707	1.10	79	72	75.50		77
12	1	55	0.48	0.693	1.10	78	72	75.00		76
13	1	60	0.69	0.831	1.50	70	70	70.00		73
14	1	65	0.72	0.849	1.60	76	70	73.00		75
15	1	70	0.71	0.843	1.60	76	70	73.00		77
16	1	75	0.71	0.843	1.60	77	70	73.50		77
17	1	80	0.70	0.837	1.60	77	70	73.50		77
18	1	85	0.63	0.794	1.45	77	70	73.50	_	73
19	1	90	0.48	0.693	1.10	78	70	74.00		72
20	1	95	0.61	0.781	1.40	77	70	73.50		74
21	1	100	0.76	0.872	1.75	78	70	74.00		76
22	1	105	0.83	0.911	1.91	79	70	74.50		77
23	1	110	0.83	0.911	1.91	80	70	75.00		77
24	1	115	0.68	0.825	1.56	81	71	76.00		74
25	2	0	0.85	0.922	2.10	76	70	73.00	-0.81	78
26	2	5	0.90	0.949	2.25	80	71	75.50	-0.82	
27	2	10	0.92	0.959	2.30	81	71	76.00	-0.82	
28	2	15	0.92	0.959	2.30	81	71	76.00	-0.79	
29	2	20	0.86	0.927	2.15	81	72	76.50	-0.80	
30	2	25	0.69	0.831	1.73	80	72	76.00	-0.59	
31	2	30	0.45	0.671	1.13	79	72	75.50	-0.58	
32	2	35	0.54	0.735	1.35	78	71	74.50	-0.54	
33	2	40	0.58	0.762	1.33	78	71	74.50	-0.30	
34	2	45	0.58	0.762	1.33	78	71	74.50	-0.35	
35	2	50	0.53	0.728	1.22	78	71	74.50	-0.35	
36	2	55	0.48	0.693	1.10	78	71	74.50	-0.28	
37	2	60	0.68	0.825	1.56	71	70	70.50	-0.44	
38	2	65	6 0.68	0.825					-0.52	
39	2	70	0.69	0.831	1.59		70	75.00	-0.54	
40	2	75	0.69	0.831	1.59			74.50	-0.54	
41	2	80	0.69	0.831	1.59			75.00	-0.54	
42	2	85	0.64	0.800	1.47			75.00	-0.52	
43	2	90	0.50	0.707	1.15			75.00	-0.54	
44	2	95	0.65	0.806	1.50			74.50	-0.54	
45	2	100	0.77	0.877	1.77	-		75.00	-0.54	
46	2	105	0.83	0.911	1.91				-0.54	
47	2	110	0.86	0.927	1.98			75.00	-0.54	
48	2	115	0.74	0.860	1.70	79	71	75.00	-0.28	77

MEASURED DATA FROM TEST RUNS

		Run	Pitot	Square	Orifice	DGM	DGM	Average	Stack	
Point		Time	Delta P	Root of	Delta H	Temp IN	Temp	DGM	Pressure	Stack
Count	Run#	(min)	(in H2O)	Delta P	(in H2O)	(°F)	OUT (°F)	Temp (°F)	(in H2O)	Temp (°F)
4 9	3	0	0.87	0.933	1.96	69	69	69.00	-0.82	73
50	3	5	0.89	0.943	2.00	79	69	74.00	-0.82	77
51	3	10	0.89	0.943	2.00	80	70	75.00	-0.80	77
52	3	15	0.92	0.959	2.07	81	70	75.50	-0.78	78
53	3	20	0.89	0.943	2.00	82	71	76.50	-0.74	78
54	3	25	0.75	0.866	1.69	82	71	76.50	-0.58	72
55	3	30	0.46	0.678	1.04	81	71	76.00	-0.30	73
56	3	35	0.53	0.728	1.19	80	71	75.50	-0.28	77
57	3	40	0.53	0.728	1.19	80	71	75.50	-0.26	77
58	3	45	0.53	0.728	1.19	81	71	76.00	-0.24	78
59	3	50	0.53	0.728	1.19	82	71	76.50	-0.22	77
60	3	55	0.50	0.707	1.13	82	71	76.50	-0.22	72
61	3	60	0.68	0.825	1.53	77	70	73.50	-0.48	77
62	3	65	0.71	0.843	1.60	84	71	77.50	-0.52	73
63	3	70	0.71	0.843	1.60	85	72	78.50	-0.52	75
64	3	75	0.71	0.843	1.60	85	72	78.50	-0.54	77
65	3	80	0.69	0.831	1.59	84	73	78.50	-0.56	77
66	3	85	0.62	0.787	1.43	84	73	78.50	-0.58	77
67	3	90	0.49	0.700	1.13	83	73	78.00	-0.56	77
68	3	95	0.65	0.806	1.55	83	73	78.00	-0.52	73
69	3	100	0.78	0.883	1.79	84	73	78.50	-0.52	77
70	3	105	0.84	0.917	1.93	84	73	78.50	-0.52	77
71	3	110	0.86	0.927	1.98	85	73	79.00	-0.50	77
72	3	115	0.73	0.854	1.68	85	73	79.00	-0.30	77

Bf Goodrich Plating P001 Scrubber Exhaust Stack

TEST DATA

	Run 1	Run 2	Run 3	Average
CONCENTRATION CALCULATIONS				
Calculate the Total ug's of Cr in Each Sample				
Vml (Volume of impinger plus rinses) (ml)	477	475	474	475
C (Concentration of Cr in sample) (ug Cr/ml)	0.01870	0.02330	0.01650	0.01950
F (Dilution Factor=Vol. of aliquot after dilution/Vol. of aliquot before dilution) (ml/ml)	1.0	1.0	1.0	1.0
D (Digestion Factor=Vol. of sample aliquot after digestion / Vol. of sample aliquot submitted to digestion)(ml/ml)	0.500	0.500	0.500	0.500
(Digestion Factor is typically 0.5)				
Total Cr in each field sample (ug)	4.5	5.5	3.9	4.6
Chromium Emission Results				
Vmstd (Dry Standard Volume Metered on DGM) (dscm)	2.264	2.307	2.235	2.269
Measured Chromium Concentration (mg/dscm)	0.00197	0.00240	0.00175	0.00204
Chromium Concentration (lb/dscf)	1.230E-10	1.498E-10	1.092E-10	1.273E-10
Chromium Emission Rate (lb/hr)	0.00024	0.00030	0.00022	0.00025
Chromium Concentration (ppmv)	0.00091	0.00111	0.00081	0.00094
Chromium Emission Rate (mg/hr)	111.12	136.13	99.42	115,56

EPA Methods 1, 2, 4, and 306 Nomenclature and Sample Calculations Run No. - 1

<u>Constants</u>

CO2Fw= 44.0	in wg= 0.073529	$NO_2F_{wt} = 46.01$	HCIF _{wt} = 36.46
$O_2F_{wl} = 32.0$	gr= 0.000142857	COF _{wt} = 28.01	SO ₂ F _{w1} = 64.06
$CON_2F_{w} = 28.0$	mmBtu= 1000000 Btu	H ₂ SO ₄ F _{wt} = 98.08	Cl ₂ F _{wt} = 70.91
$H_2OF_{w} = 18.0$	CF _{wt} = 12.011	T_{std} = 528	P _{std} = 29.92

Stack Variables

Cp =	0.84	pitot tube coefficient (dimensionless)
P _{bar} =	29.17 in. Hg	barometric pressure
E _{box} =	57 ft	elevation difference between ground level and meter box
$E_{sam} =$	57 ft	elevation difference between ground level and sampling ports
γ =	1.0154	gamma, dry gas meter calibration factor (dimensionless)
θ =	120.0 min	net run time (minutes)
V _{lc} =	41.9 g	total mass of liquid collected in impingers (g)
A =	12.4619 ft²	stack cross-sectional area
P _g =	-0.40 in. H₂O	flue gas static pressure
T _{savo} =	535.42 R	average absolute flue gas temperature (460R+tsavg °F)
$SQ\Delta P_{avg} =$	0.83 in. wg	average square root ∆P
ΔH =	1.56 in. wg	average pressure differential of orifice meter
$T_m =$	534.56 R	dry gas meter temperature (460R+tsavg °F)
V _m =	81.60 ft ³	volume of metered gas sample (dry actual cubic feet)
$D_n =$	0.217 in.	sampling nozzle diameter

Calculated Stack Variables

Barometric pressure at sampling location

NOTE: Barometric pressure recorded at ground level

$$P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$$

$$P_{sam} = 29.17 - ((57.0 / 100) * 0.1)$$

$$P_{sam} = 29.12 \text{ in. Hg}$$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 1.0154 * 81.595 * ((29.17 - ((57.0 / 100) * 0.1) + (1.5575 / 13.6)) / 29.92) * (528.0 / 534.563)$$

$$V_{mstd} = 79.946 \text{ ft}^3$$

Volume of water vapor at standard conditions (68 °F, scf)

$$V_{wstd} = (0.04715 \text{ ft}^3/\text{g}) * \text{Vic}$$

$$V_{wstd} = (0.04715 * 41.9)$$

$$V_{wstd} = 2.0 \text{ ft}^3$$

Percent moi stue by volumeas measured in fluegas

%
$$H_2O$$
 (Measured) = 100 * [V_{wstd} / (V_{wstd} + V_{mstd})]
% H_2O (Measured) = 100 * (1.976 / (1.976 + 79.946))
% H_2O (Measured) = 2.41

Absolutef luegas pressure

$$P_s = P_{sam} + (Pg / 13.6)$$

 $P_s = 29.12 + (-0.40 / 13.6)$
 $P_s = 29.09 \text{ in. Hg}$

Dry mol ef raction of fl ue gas (dimensionless)

$$M_{td} = 1 - (\%H_2O / 100)$$
 $M_{td} = 1 - (2.41 / 100)$
 $M_{td} = 0.976$

Dry mol ecul arweight of fl uegas (I b/I b-mol e)

$$\begin{split} &M_d = \left[\left(\%CO_2 / 100 \right) * 44.0 \right] + \left[\left(\%O_2 / 100 \right) * 32.0 \right] + \left[\left(\left(100 - \%CO_2 - \%O_2 \right) / 100 \right) * 28.0 \right] \\ &M_d = \left(\left(0.00 / 100 \right) * 44.0 \right) + \left(\left(0.00 / 100 \right) * 32.0 \right) + \left(\left(\left(100 - 0.00 - 0.00 \right) / 100 \right) * 28.0 \right) \\ &M_d = & 28.00 \text{ l b/l b-mole} \\ &M_d = & 29.00 \end{split}$$

Wet mol ecularweight of f lue gas (I b/l bmol e)

$$M_s = M_d * M_{fd} + (H_2OF_{wt} * (\%H_2O / 100))$$

$$M_s = 29.000 * 0.976 + 18.00 * (2.41 / 100)$$

$$M_s = 28.73 |b/lb-mole|$$

Average flue gas vel city (ft/sec)

$$v_s = 85.49 \,^{\circ} \,^{\circ$$

Wet volumetricfl uegas flow rate at actual conditions (acf m)

$$Q_{aw} = v_s \cdot A \cdot 60 \text{ sec/min}$$

$$Q_{aw} = 47.460 \cdot 12.462 \cdot 60$$

$$Q_{aw} = 35,487 \text{ ft}^3/\text{min}$$

Wet volumetric flue gas flow rate at standard conditions (scfm)

$$Q_{sdw} = v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 sec/min$$

$$Q_{sdw} = 47.460 * 12.462 * (528.0 / 535.417) * (29.086 / 29.92) * 60$$

$$Q_{sdw} = 34.019 ft^3/min$$

Dry volumetric flue gas flow rate at standard conditions (dscfm)

$$Q_{sd} = M_{fd} * v_s * A * (T_{sid} / T_{savg}) * (P_s / P_{sid}) * 60 sec/min$$

$$Q_{sd} = 0.976 * 47.4604 * 12.4619 * (528.0 / 535.417) * (29.086 / 29.92) * 60$$

$$Q_{sd} = 33,199 \text{ ft}^3/min}$$

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

%I =
$$(P_{std} / T_{std}) * (T_{savg} / P_s) * [V_{mstd} / (v_s * M_{td} * \theta * \pi * (D_n / 2)^2)]$$

%I = $((((29.92 / 528.0) * (535.417 / 29.086)) * (79.946 / (47.4604 * 0.976 * 120.0 * (()3.141593 * (0.217 / 2) ^ 2) / 144))) / 60) * 100$
%I = 97.4%

Method 306 Calculations

Total Cr catch weight (ug)

$$ug_{quan} = 4.46 ug$$

Total Cr concentration (mg/dscm)

$$C_{grown} = ug_{quan} / (1000^{\circ} V_{mstdm})$$

 $C_{grown} = 4.46 / 2.264$

 $C_{gram} = 0.001970 \text{ mg/dscm}$

Method 306 Is netic Field Data

	Plant		Bf Goodrich Plati	ng		Meter box	no.	T-MTB-	21 /		Gamma	1.0154	1		
	Location	n	P001 Exhaust St	ack (A)		Pump no.	.,	T-PMP-	2//		K Factor 2:25 / 2.20 / 2.3				
	Run no.	7	******			Nomograp	h no.	T-NOM-	CAIC		Nozzle Size, in. , 2/7				
	Test sta	rt time	8:26			Probe no. T-PRB- 608					c pressure,		1.17		
	Test sto		10:36			Filter box r	10.	T-FLB-	SII		Ambient t	emperature,	°F 6		
	Pre-test	leak rate	a 15in.Hg	100		Impinger b		ے -T-IMB				temperature			4
	Post-tes	st leak rate		00/		Umbilical o		T-UMC-	607			nperature se		NA	
	Pre-test pitot leak check - total / static /					Umbilical a	dapter no.	T-UMA-	30B			rate setting		NIA	
	Post-tes	st pitot leal	k check - total	✓ static	V	Orsat bag					Meter box		16		2/27/07
		CLOCK		PITOT	ORIFI		PROBE	STACK	DRY	GAS	OVEN	IMPINGER	PUMP	ORSAT	STATIC
i li	POINT	TIME	METER	In. H₂O	în. l	H₂O	TEMP	TEMP	TEM	IP, °F	TEMP	TEMP	VACUUM	FLOW	PRESSURE
		min	CF	ΔP	DESIRED	ACTUAL	°F	°F	INLET	OUTLET	°F	°F	in.Ḥg	SCFH	±in.H₂O
2.25	i	0	418.750	, 80	1.80	1.80	67	75	69	68	66	66	-4		_
	Z	5	422,435	. 90	2.03	200	67	74	79	69	67	45	5-	_	80
	B	10	426.120	-93	2.09	2.10	68	74	80	70	67	49	-5		
	4	15	430,010	93	2.09	2,10	68	75	81	71	67	5-1	-5		
	مع	20	434,250	,89	7,00	2.00	680	77	83	71	68	44	-5		_
	6	25	437,945	.74	1.66	1.70	68	78	83	72	67	50	-4		-
	7	30	441.465	.45	1,01	1,00	64	78	82	72	68	50	-3	_	- 25
2.20	8	35	444.300	.5Z	1.14	1.10	69	75	82	72	68	50	- 3		
	9	40	447.175	. 54	1,19	1.20	64	74	81	73	67	50	چ ۔		
[10	45	450,050	. 5.3	1.17	1,20	68	75	80	73	6.7	50	-3	_	
[4	50	453.010	,50	1,10	1.10	67	27	79	72	67	51	- 3	_	
	012	55	455, 890	.48	1.06	110	67	76	78	72	66	51	-3	_	_
- 1	1		458, 755	169	1.52	1,50	66	73	70	70	66	5-2	-4	_	
	Z	65	46Z, 540	,72	1.58	1.60	66	75	76	70	66	47	-4		
	5	70	465. 960	.71	1.56	1.60	66	フフ	76	70	66	49	-4		
_			469. 390	7/	1.56	1,60	66	77	77	70	66	50	-4		i - assu
2.3	3		472,810	,70	1.61	1,60	66	77	77	70	66	51	-4		50
- 1	6		476,230	. 6,3 "	1.45.	1,45	66	73.	• 77.	704	66	51	-4	_	
- 1	7		479.510	.48	1.10-	1,10	66	72	78	70	66	51	-3	_	
- 1	8	95	482.61	.6('	1,40 .	1.40	66	74-	77	70	66	51	4.0		38
1	9	100	485.62	.76 -	1.75	1.75	67	76	78	70	67	52	4.5		-34
- 1	10	105	489,19	. 73	1.91	1.91	67	フナ	79	70	67	42	5:0	ســ	7.3.2
- 1	11	110	492.97	.83	1.91	1.91	67	7-7	70	70	67	53,	50		7.32
- }	12	115	496.81	,68	1,56	1.56	68	74	81	71	68	54	-5		- 29
L				-	an-11 - Cariti										
	Final Nomogra		500,400 on Variables	Λυ@ (D 🕶	Z Cpo.89	- Ts	Tm		Ps	Pm	ΔΡ	Bws	翻		
	Commen		E FOR PC (EDK V 4	EQ 75			ΔF	DWS			
3,7		FAUL	- Yes 16 (4	9 / . 2.0	1,23		CHE Y 4	-00	The same of the latest terms.	PIV					
्	Test Obs	ervers -	* ***			-			<u> </u>	****					

Method 306 Is atic Field Data

Plant	Bf Goodrich Plating
Location	P001 Exhaust Stack (A)
Run no. 2	table of the second works as
Test start time	10:52
Test stop time	13:03
Pre-test leak rat	e @ 15in.Hg 👩 , 🐠 i
Post-test leak ra	ite @ (in.Hg o.ooD)
Pre-test pitot lea	ak check - total / static
Post-test pitot le	ak check - total / static

Meter box no.	T-MTB- O((
Pump no.	T-PMP- OII
Nomograph no.	T-NOM-
Probe no.	T-PRB- 610
Filter box no.	T-FLB- 47 も
Impinger box no.	T-IMB- 003
Umbilical cord no.	T-UMC-602
Umbilical adapter no.	
Orsat bag no.	

Gamma	1.015	1			
K Factor	2.5	12,3	3 /	76	
Nozzle Siz	e, in	221			
Barometric	pressure	, in.Hg	29.17	7	
Ambient te	mperature	e, °F 6	9		
Filter box t	emperatui	re setting,	°F		
Probe tem	perature s	etting, °F			
Orsat flow				*	
Meter box	operator	PG	Date	9/27	2/07

				100									_	The same of the sa	
	50.00	CLOCK	DRY GAS	PITOT	ORIFIC	ΕΔΗ	PROBE	STACK	DRY	GAS	OVEN	IMPINGER	PUMP	ORSAT	STATIC
K	POINT	TIME	METER	In. H₂O	In. I	I₂O	TEMP	TEMP	TEM	P, °F	TEMP	TEMP	VACUUM	FLOW	PRESSURE
K		min	CF	ΔΡ	DESIRED	ACTUAL	°F	°F	INLET	OUTLET	°F	°F	in.Hg	SCFH	± in.H ₂ O
2.5		D	500.440	.85	2.1	ZI	70	78	76	70	68	59	3,5	_	8i
	2	5	904,365	. 40	2,25	2.25	70	78	00	71	68	53	4.0		82
	3	10	508, 490	.92	2.3	2.3	70	74.	81	7/	68	5Z	4.0		8Z
	4	15	512,710	. 42	<i>z.</i> 3	2,3	70	74	81	7/	68	54.	4.0		79
	5	20	576,940	.86	2.15	2115	76	76	81	72	68	54;	3.5	_	-,80
	6		520, 950	. 69	1,73	1.73	70	77	80	72	68	54	3,50		59
	7	30	524.565	45	1. 13	1.13	70	78	79	72	68	54,	2.5		~.58
•	8	35	527,540	.54	1.35	1,35	69	78	78	71	68	54	2,5	_/	-15A
4,3	9	40	530, 630	. 53	1. 33	1,33	69	74	78	7/	68	54	2 :5		30
	10	45	533,700	.53	1. 33	1, 33	49	74	78	7/	68	54	2.5		35
	1(50	536,810	,53	1.22	1.22	68	フフ	78	21	67	5.3	2,5		_, 35
	[]	55	539,800	34B	1.10	1.10	68	77	78	71	67	54	2.5		_, 28
	-	60	542.660	.68	1.56	1.56	67	27	71	70	66	58	3,0		- 44
	2	65	545,945	.68	1.57	1.56	67	74_	79_	70	66	53	3.0		57
	3		549, 280	.69	1.59	1.59	67	76	80	70	66	52	3.0		54
	y	75	552.685	,69	1.59	1.59	67	77	79	70	66	54	3.0		54
	5	80	556,100	-69,	1.59	1.59	67	77	79	71	66	55,	3,0		54
	6	85	559,475	104	1,47	1.47	67	77	79	7/	66	54,	3,0		52
	7	90	562.850	.50	1.15	1,15	67	72	79	71	66	54,	2,5		54
	1	95	565,760	.65	1.50	1.50	67	74	78	71	66	54	3,0		- 59
	9	100	569, 135	.77	1.77	1.77	67	77	79	71	66	53	3,5		<u>5</u> -4
	10	105	572,510	, 83	1.91	1.91	67	77	80	7/	66	54,	3.5		_,54
	Щ	120	576,300	186	1.9B	1.98	67	27	79	71	66	54	3,5		-,54
	12	115	580,085	.74	1,70	1.70	67	77	75	7/	66	54	3.0	~	28
										L					

 Final
 1ZO
 583, 665

 Nomograph Calibration Variables
 ΔH@ 1-722 Cp . 74 Ts
 Tm
 Ps
 Pm
 ΔP
 Bws

 Comments:
 Pase PC PD 11:5Z - 1Z:03
 LEAL V 54Z.660 - 54Z.680

 Test Observers

Job Number: 070920 A
Done By / Date: 6 / 9/27/07
Final Check By / Date: 10/20167

Method 306 Is inetic Field Data

Plant	Bf Goodrich Plating
Location	P001 Exhaust Stack (A)
Run no.	3
Test start time	13:38
Test stop time	16:01
Pre-test leak	rate @ 15in.Hg
Post-test leak	rate @ 3 in.Hg w/
Pre-test pitot	leak check - total / static /
Post-test pitol	leak check - total / static /

Meter box no.	T-MTB- 01
Pump no.	T-PMP- 011
Nomograph no.	T-NOM- CALC
Probe no.	T-PRB- 60B
Filter box no.	T-FLB- 0/1
Impinger box no.	T-IMB- 019
Umbilical cord no.	T-UMC- 60Z
Umbilical adapter no.	T-UMA- 00B
Orsat bag no. N/	P

K Factor	1.015 Z.25	1 2,3	, /	
Nozzle S	ze, in.	217		
Barometi	ic pressure	e, in.Hg	291	7
Ambient	emperatur	e, °F	67	5
Filter box	temperatu	re setting,	°F —	_
Probe ter	nperature	setting, °F		
Orsat flov	v rate setti	ng, SCFH		
Meter bo	coperator	101_	Date	9/27/1-

	Γ Τ	CLOCK	DRY GAS	PITOT	ORIFIC	CE ΔΗ	PROBE	STACK	DRY	GAS	OVEN	IMPINGER	PUMP	ORSAT	STATIC	
K	POINT	TIME	METER	ln. H₂O	ln. i	l₂O	TEMP	TEMP	TEM	P, °F	TEMP	TEMP	VACUUM	FLOW	PRESSURE	
~		min	CF	ΔP	DESIRED	ACTUAL	°F	°F	INLET	OUTLET	°F	°F	in.Hg	SCFH	± in.H₂O	
2.25	1	0	583,755	-87	1.96	1.96	66	73	69	69	66	55	4.0		8Z	
	Z	5	587,500	89	2.00	2,00	67	77	79	69	66	50	4.0		- 82	
	3	iO	591.355	. 29	2.00	2.00	67	77	<i>පි</i> ට	70	66	51	4.0		-,80	
	4	15	595.225	.92	2.07	2.07	67	78_	81	70	66	53,	4.5		. 78	
	5	20	599,090	.89	2.00	2.00	67	78	8 Z	7/	66	54	4,5		74	
	6	25	60Z. 985	.75	1.69	1.69	67	72	8Z	7/	66	56	4.0		SB	
	7		60kg, 550	.46	1.04	1,04	bla	73	81	71	6.5	5Z	3.0		_ , 30	
	8	35	609,350	,53	1.19	1.19	66	77	80	2/	65	51	3 ,₺		Z8	Au6 .64
	9	40	612.500	,53	1.19	1119	6.5	77	_80	71	65	50	3,0		_, 26	
	10	45	615,000	153	1.19	1.19	65	78	81	71	65	49	3,0		-, 24	
	11	\$	617.890	53	1,19	1.19	65	77	82	71	65.	48	3,0		- 22	
	12	55	620,770	.50	1113	1.13	65	72	82	71_	64	48	3,0		-,22	1
	1	60	623,565	.68	1.53	1.53	65	77_	27	70	65	51	3.5		48	
	Z	65	626,850	.71	1.60	1.60	67	73	84	71	66	45	3,5		-,52	
	3	70	630,250	.71	1.60	1.60	67	75	85	72	66	46	3,5	_	-,52	AV6.39
	4	25	633.650	.71	1.60	1.60	67	77	85	72_	66	48	3.5		-,54	
23	5	డ్డు	63300	0.69	1,59	1.59	68	77	234	73	66	49	3,5		56	
	6	85	640,440	.62	1,43	1.43	68	77	84	73	66	49	3.5		~.58	4
	7	90	43.685	.49	113	1.13	68	77	83	73	66	50	3,0		56	4
	8	95	46,585	. 45	1.50	1.50	68	7.3	83	73	67	49	3,5		7.52	ļ
	Ÿ	100	649,885	. 78	1.79	1,79	68	77	84	73_	67	49	4.0		-152	
	10	105	653,480	.84	1,43	1,93	68	77	84	73	67	49	4,0		-,52	4
	/1	110	657.255	,86	1.98	1.98	68	77	85	73	67	50	4,25	-	-,50	1
	12	115	661,100	,73	1:68	1.68	69	77	85	73	67	50	3.75		7, 30	1
						(4)								<u> </u>	32 22	Ŀ
	Final	100	11/1/22													

Final 120 664.635

Nomograph Calibration Variables ΔH@ 1.822 Cp₀, ξΨ Ts Tm Ps Pm ΔP Bws

Comments: Pause PC @ 14:38 - 15:01

LEAK 1623.565 - 6.23.583

NOTE - METER @ 60 MW 15 637, 045

Test Observers -

Job Number: 070920 A

Done By / Date: (C) - 1/27/07

Final Check By / Date: (1) (2) (2) (2) (2)

Air C lance Testing, Inc.
(Method xis-Isokinetic Field Data) 9/13/2007

Method 4 Moisture Recovery

Plant Name Bf Goodnic	ch Plating	Shop Balance ID - A-BA	AL Prepare	ed By
Location P001 Exh	aust Stack (A)	Field Balance ID - A-B/	AL- 207 Preparation	on Date —
Run Number	1	2	3	4
Run Date	9-27-07	9.27-07	9-27-07	
Analysis Date	9-27-07	9-27.07	9.27.07	
Time of Analysis	12:02	14:19	16.25	
Turbidity / Color (Clear, Cloudy, Suspended Par	<u>Clear / wre</u> ticulates, etc.)	denspare	der/some	
Impinger #1				
Final Weight (g)	707.6	628.0	756.7	
Tared Weight (g)	687.5	611.3	689.9	
Condensed H₂O (g)	_20.1	16.7		
Impinger #2				
Final Weight (g)	<u> 666.3</u>	679.2	670.3	
Tared Weight (g)	661.9	673.3	665.4	
Condensed H₂O (g)	4.4	5.9	4.9	
Impinger #3				
Final Weight (g)	574.2	586.4	589.6	
Tared Weight (g)	572.5	<u> 584.6</u> ———	587.8	
Condensed H₂O (g)		1.8	1.6	
Total Condensed (g)	<u>26.7</u> _	24.4	23.3	
SILICA GEL				
Final Weight (g)	936.2	835.6	881.7	
Tared Weight (g)	920.5	820.1	867.2	
Adsorbed H₂O (g)	15.7	15.5	14.5	
Total H ₂ O Collected (g)	41.9	39.9	37.8	

Plant Name_Bf Goodrich Plating		Location	P001
Reagents	Prepared By	AS	/ Date
	Run 1	Run 2	Run 3
Run Date	9/27/07	9/27/07	9/27/07
Analysis Date	9/27/07	9/27/07	9/27/07
Time of Analysis	12:02	14:19	16:25
IMPINGER #1			
Final Weight (g)	707.6	628.0	706.7
Tared Weight (g)	687.5	611.3	689.9
Condensed H₂O (ml,g)	20.1	16.7	16.8
IMPINGER #2			
Final Weight (g)	666.3	679.2	670.3
Tared Weight (g)	661.9	673.3	665.4
Condensed H₂O (ml,g)	4.4	5.9	4.9
IMPINGER #3			
Final Weight (g)	574.2	586.4	589.4
Tared Weight (g)	572.5	584.6	587.8
Condensed H₂O (ml,g)	1.7	1.8	1.6
Total Condensed (ml,g)	26.2	24.4	23.3
SILICA GEL			
Final Weight (g)	936.2	835.6	881.7
Tared Weight (g)	920.5	820.1	867.2
Adsorbed H ₂ O (ml,g)	15.7	15.5	14.5
Total H₂O Collected (ml,g)	41.9	39.9	37.8
Analytical Balance ID	A - BAL - [007	

Method 1 - Cyclonic Flow Determination

Plant I	Name Bf Goodric	h Plating						-
City, S					,			
		aust Stack (A)		7				
Pitot I.	D T-PIT-16		Manon	neter I.D T - MT/	3-01[Umbilio	cal I.D. T - M20-	508
-	umber - (Run No	ımber -	/	Run No	umber -	
	912610+		Date -			Date -		
Bar. P	res. (in. Hg)-	1.3	Bar. Pr	es. (in. Hg)-		Bar. Pr	es. (in. Hg)-	
Barom	eter ID- DPG O	009	Barom	eter ID-	/	Barom	eter ID-	
	ime-15:45/15		Start T	ime -		Start T	ime -	
	Time-15:52/16.		Finish		/-	Finish		/_
	eter Zero and Level - Yes			ter Zero and Level - Yes	- /		ter Zero and Level - Yes	- /
	us Leak Check - Done By: act Side - Pass-	7	I .	us Leak Check - Done By:	/	1 ' '	us Leak Check - Done By:	/
1	tic Side - Pass		1	act Side - Pass □ c Side - Pass □	/	1	act Side - Pass □ ic Side - Pass □	/
rie Stat	IL Side - Fass		rie Siati	L Side - Fass L	/	FIE Stati	L Side Fass L	-/-
Test	Notes	Va 4 - 515 (8)	Test	Notes	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Test	Mataa) / A - a la (8)
Point	Notes Notes	Yaw Angle (°)	Point	Notes	Yalw Angle (°)	Point	Notes	Yaw Angle (°)
1	NE	13	1		/	1	0	/
2	<u>-</u>	-1)	2		/	2		/
3		10	3 4			4		
5		~9	5	/		5	<i>f</i>	
6		-1	6	/		6	/	
7		+9	7		-	7		7.
8		20	8	1		В		9
9	SEE	t22	9			9		
10	•	121	10			10		3
11	٠,٠	+23	11	j		11		
12	13.22	121	12	ĺ		12		
13	SE -	-14	13			13		
14	TA:	-1.4	14			14		
15		-11-	15			15		
16	9-	<u>-11</u>	16]		16		
17		712	17			17		
18		-14	18			18		. []
19		t16	19			19		
20		f19	20	1		20		
21		12/	21			21	/	
22	3	+20	22	/		22	/	
23		+19	23 /			23 /		
24	15.58	t (6	24/			24/	Fr :	
25			25			25	S. C.	
ļ		16-92	$\vdash \!\!\!\! \! \!\!\! \! \!$	Avg.		\coprod	Avg.	
	us Leak Check - Done By:	KO/GG	I /	us Leak Check - Done By:		11 <i>1</i> '	us Leak Check - Done By:	
13	pact Side - Pass	1	1/	eact Side - Pass □		1/	oact Side - Pass 🗆	
	atic Side - Pass		Post Sta	tic Side - Pass ided by the symbol of mea			tic Side - Pass □	

Note: Yaw angle average is the sum of the absolute values divided by the number of measurements, and must be ≤ 20°.

Yaw angle is the angle measured from the point where zero ΔP should be obtained to the point where zero ΔP is actually obtained

Job Number: 070920 A

Done By / Date: KG- 1 1/26

Checked By / Date: V / 10/22/67

Final Check By / Date: 7 / 10-13

Method 1 Preliminary Field Data-Round - Round Stack

Plant Bf Goodrich Plating City, State Cleveland, OH		•	
Location P001 Exhaust Stack (A)		- -	
Relative Location From Far Inside Wall to Outside of Port (in.) Nipple Length and/or Wall Thickness (in.) Nipple Protrusion (in.) Stack or Duct Depth (Inner Diameter) (in.) Stack Outer Circumference (in.) Port Hole Inner Diameter (in.) Elevation of Meter Box from Ground Level (ft) Elevation of Ports from Ground Level (ft) Number of Ports Direction of Flow Isokinetic Sample (Yes / No) Stack Particulate Build-up (Yes / No)	Port 1 Port 2 NE SE 47.0 48.0 2 2 0 0 47.1 151.5 3.5 3.5 57.0 2 1 Yes 70	Port 3	Port 4
Distance Upstream from Flow Disturbance (in.) Diameters Upstream from Flow Disturbance (≥ 0.5 Minimum Traverse Points Needed * Distance Downstream from Flow Disturbance (in.) Diameters Downstream from Flow Disturbance (≥ 2	<u>24</u>		

149,5

*Circle Larger of the Two

24

Stack or Duct Area =

Minimum Traverse Points Needed *

1794 51

in.2

	4	6	8	10	12	14	16	18	20	22	24
1	6,7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.1
8			96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
9	ľ			91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
10	1			97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.2
11	ì				93.3	85.4	78.0	70.4	61.2	39.3	32.3
12	l				97.9	90.1	83.1	76.4	69.4	60.7	39.8
13	l					94.3	87.5	81.2	75.0	68.5	60.2
14	l					98.2	91.5	85.4	79.6	73.8	67.7
15	1						95.1	89.1	83.5	78.2	72.8
16	1						98.4	92.5	87.1	82.0	77.0
17								95.6	90.3	85.4	80.0
18								98.6	93.3	88.4	83.9
19									96.1	91.3	86.
20	ļ								98.7	94.0	89.
21										96.5	92.
22	1									98.9	94.
23	1						(2)				96.8
24	1										98.9

Note

- Stacks having a diameter greater than 24in, shall have no traverse points located within 1.0in of the Stack walls.
- 2) Stacks having a diameter less than or equal to 24in, shall have no traverse points located within .50in of the Stack walls
- 3) Add nipple protrusion length to Point 1 only Actual nlpple length = (length protrusion

Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger

	Job Nu Done By / Date:	mber:	070920 A 1912(187
Checked By / Date: _	Theck By / Date:		1 10-73 27

Port Number	_ 1	2	3	4	S	6	7
Relative Location	NE	SE					
From Far Wall to Outside of Port (in.)	48.00	48.00					
Nipple Length or Wall Thickness (in.)	0.20	0.20					
Port Protrusion Length (opt) (in.)	0.00	0.00					6
Depth of Stack or Duct (in.)	47.80	47.80					
Stack or Duct Type	Circular						
Port Hole Inner Diameter (in.)	3.5						
Stack or Duct Width (If Rectangular) (in	1			#N/A			
Stack Outer Circumference (in.)	151.5			W1571			
Number of Ports	2.0						
	57.0	ľ					

De = 2 x (Depth x Width)

(Depth + Width)

Particulate
24.0
0.50
16
24

Distance Downstream from Flow Disturbance (in.)	105.0
Diameters Downstream from Flow Disturbance (* 2 De)	2.20
Minimum Traverse Points Needed for a Velocity Traverse *	16
Minimum Traverse Points Needed for a Particulate Traverse *	24

Minimum Traverse Points	24
Traverse Point Overide	
Duct Area - in ²	1794.51
Duct Area - 112	12.4619
Diameter Check via Circumference (in.)	48,2239

Location of Points in Circular Stacks or Ducts

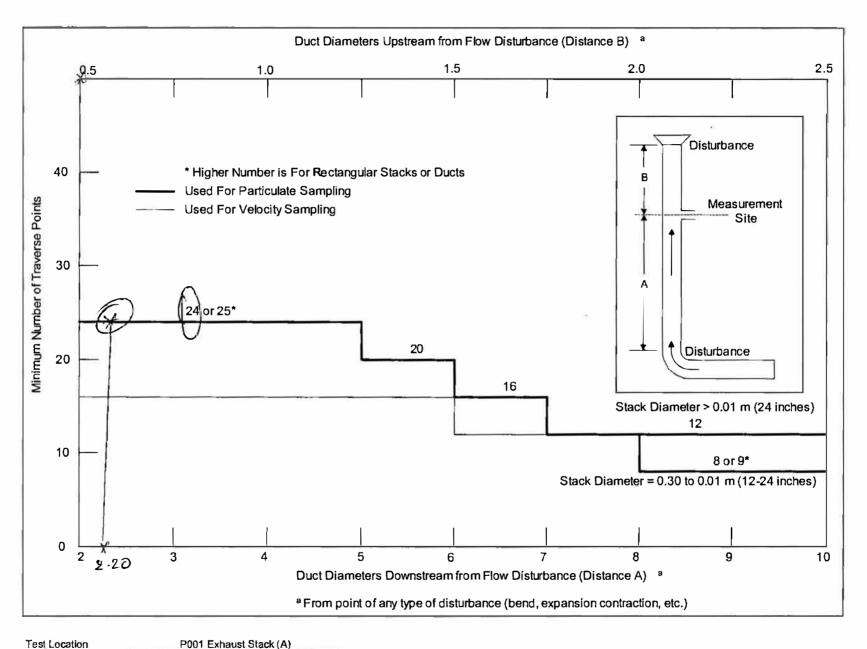
	4	6		10	12	14	16	18	20	22	24
1	B.7	4.4	32	2.6	2.1	1,8	1.6	3.4	1.3	1,1	1.1
2	250	14.6	10 5	8.2	6.7	5.7	4.9	4.4	39	3.5	3.2
3	75.0	29.6	19 4	146	118	9,9	8.5	7.5	6.7	6.0	5,5
4	833	70 4	32.3	22.6	17.7	14.6	125	109	9.7	8.7	7,9
5	1	654	67.7	34.2	25.0	201	15.9	146	12.9	116	10.5
6	l	95.6	806	65 B	35.6	26.9	22.0	18.8	15.5	146	13.2
7			89.5	77.4	64 4	36.6	28.3	23.6	20 4	18.0	16 1
B	l		96.8	85 4	75.0	63 4	37.5	29 6	25.0	21.8	19.4
•	l			918	₽2.3	73.1	62.5	38.2	306	26.2	23.0
10	l .			97.4	68.2	79.9	71.7	61.0	38 B	31.5	27.2
11	l .	9 3			933	554	78.0	70 4	61.2	39.3	32 3
12	1				97 9	90 1	83.1	76 4	69 4	60.7	39.8
13	1					94.3	87.5	81 2	750	68.5	60.2
14	1					98 2	91.5	B5 4	79.6	73 B	67.7
(S	1						95.1	89 t	83.5	78 2	72.6
18	ı						98.4	92.5	87.1	82.0	77.0
17	1							95.6	90.3	85 4	80.6
18	1							99.6	93.3	85 4	83.9
19	ı								96 L	91.3	86.8
20	ı								98.7	94 0	89 5
21	ı									96,5	92.1
72	I									98.9	945
z 3	l										96.8
24	l .										96.9

Location of Points in Rectangular Stacks or Ducts

1) Stacks having a diameter greater than 24in. shall have no traverse points located within

1.0in of the Stack walls.

2) Stacks having a diameter less than or equal to 24in, shall have no traverse points located within .50in of the Stack walls.


3) Add nipple protrusion length to Point 1 only. Actual nipple length = (length - protrusion)

Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger.

Number of Ports:	
Direction of Flow:	
(sokinetic Sample: Yes / No	
Stack Build-up: Yes / No	

		% of	Dist. From	Dist. From
Port	Point	Duct	inside Wall	Outside Wall
	1	Depth	(Decimal)	(Decimal)
1	1	2.1	1.0	1,2
1	2	6.7	3.2	3.4
. 1	3	11.8	5.6	5.8
1	4	17.7	8.5	8.7
1	5	25	12.0	12.2
1	6	35.6	17.0	17.2
1	7	64.4	30.8	31.0
1	8	75	35.9	36.1
1	9	82.3	39.3	39.5
1	10	88.2	42.2	42.4
1	11	93.3	44.6	44.8
1	12	97.9	46.8	47.0
2	1	2.1	1.0	1.2
2	2	6.7	3.2	3.4
2	3	11.8	5.6	5.8
2	4	17.7	8.5	8.7
2	5	25	12.0	12.2
2	6	35.6	17.0	17.2
2	7	64.4	30.8	31.0
2	8	75	35.9	36.1
2	9	82.3	39.3	39.5
2	10	88.2	42.2	42.4
2	11	93.3	44.6	44.8
2	12	97.9	46.8	47.0

Method 1 Criteria Data

Job Number: 070920 A

Done By / Date: // 19/1/07

Checked By / Date: // 1/0/2/07

Final Check By / Date: // 1/0/2/07

TEST DATA

Number of Test Dues	2			
Number of Test Runs Traverse Points	<u>3</u>			
Traverse Tollita	Run 1	Run 2	Run 3	Average
Stack Cross-Sectional Diameter 1 (circular) (in)	47.50	47.50	47.50	47.50
Stack Cross-Sectional Diameter 2 (circular) (in)	47.60	47.60	47.60	47.60
Pitot Tube Coefficient (Cp)	0.84	0.84	0.84	0.84
Barometric Pressure <u>at Ground Level</u> (Pbar) (in Hg)	29.17	29.17	29.17	29.17
Elevation Difference Between Ground Level and Meter Box Locations (ft)	57.00	57.00	57.00	57.00
Elevation Difference Between Ground Level and Sampling Locations (ft)	57.00	57.00	57.00	57.00
Initial Dry Gas Meter Reading (ft3)	734.375	814.426	897.709	
Final Dry Gas Meter Reading (ft3) Dry Gas Meter Calibration Factor (Gamma)	813.984	895.699	977.028 0.9957	0.0057
Dry Gas Meter Calibration Factor (Gamma) Dry Gas Meter Calibration Coefficient (Delta H@)	0.9957 1.808	0.9957 1.808	1.808	0.9957 1.808
Total Sampling Run Time (Theta) (min)	120	120	120	120
Volume of Water Vapor Condensed in the Impingers (g)	26.7	25.8	23.6	25.4
Weight of Water Vapor Collected in Silica Gel (g)	16.9	15.5	14.9	15.8
· · · · · · · · · · · · · · · · · · ·				
Average Pitot Rotation Angle Port Number 1	15.4			
Port Number 2	13.8			
Toot Dun Stad Time (hemis)	9.26	10.52	13:38	
Test Run Start Time (hrmin) Test Run Stop Time (hrmin)	8:26 10:36	10:52 13:03	16:01	
restriction step rane (mining)	10.001	10.00	10.01	
DETAILED RESULTS				
Stack Gas Conditions	<u>Run 1</u>	Run 2	Run 3	Average
Stack Cross-Sectional Area (A) (ft2)	12.332	12.332	12.332	12.332
Barometric Pressure at Sampling Location (in Hg) Dry Molecular Weight of Stack Gas (Md) (Ib/lb-mole)	29.12 29.00	29.12 29.00	29.12 29.00	29.12 29.00
Wet Molecular Weight of Stack Gas (Ms) (lb/lb-mole)	28.71	28.73	28.74	28.73
Average Absolute Stack Gas Pressure (Ps) (in Hg)	29.09	29.09	29.09	29.09
Average Stack Gas Static Pressure (ps) (In H2O)	-0.29	-0.33	-0.31	-0.31
Average Stack Gas Temperature (ts) (°F)	77.6	76.5	76.5	76.9
Average Stack Gas Temperature (Ts) (°R)	537.6	536.5	536.5	536.9
Average Stack Gas Velocity (Vs) (ft/sec)	48.46	47.88	47.51	47.95
Average Stack Gas Velocity (Vs) (ft/min)	2,907	2,873	2,851	2,877
Wet Volumetric Stack Gas Flow at Actual Conditions (Qaw) (acfm)	35,852	35,429	35,156	35,479
Wet Volumetric Stack Gas Flow at Standard Conditions (scfm)	34,241	33,902	33.642	33,928
Dry Volumetric Stack Gas Flow at Standard Conditions (Qstd) (dscfm)	33,346	33,077	32,858	33,094
Percent by Volume Moisture as measured in Stack Gas (%H2O)	2.61	2.43	2.33	2.46
Test Results			€3	
Volume of Dry Gas Sampled at Standard Conditions (Vmstd) (dscf)	76.594	78.143	76.110	76.949
Rate of Dry Gas Sampled at Standard Conditions (dscfm)	0.638	0.651	0.634	0.641
Predicted 1-Hour Sample Volume Based on Current Sampling Rate (dscf)	38.297	39.072	38.055	38.475
Dry Mole Fraction of Flue Gas (Mfd) (1-bw/100)	0.974	0.976	0.977	0.975
Average Velocity Pressure (Delta P) (in H2O)	0.7079	0.6958	0.6879	0.6972
Average Square Root of Delta P	0.841 1	0.8323	0.8260	0.8331
Average Pressure Differential of Orifice Meter (Delta H) (in H2O)	1.5104	1.5563	1.4938	1.5201
Average DGM Temperature (tm) (°F)	73.750	74.167	75.167	74.361
Average Dry Gas Meter Temperature (Tm) (°R)	533.750	534.167	535.167	534.361
Volume of Metered Gas Sample (Vm) (dry) (acf)	79.609	81.273	79.319	80.067
Post-Test Calibration (Yqa)	1.0506	1.0449	1.0500	1.0485
Post-Test/Pre-Test Calibration Factor Difference (%)	-5.51	-4.94	-5.45	-5.30
SAMPLING QA				
Current Predicted Allowable Post-Test Leak Rate (dscfm)	0.020	0.020	0.020	0.020
Current Sampling Rate Status	ok	ок	OK	
Probe Nozzle Diameter (in)	0.213	0.212	0.213	0.213
Percent Isokinetic of Sampling Rate (% I)	95.4	99.0	96.2	96.9
In Field Isokinetic QA	GOOD	G 00D	GOOD	24.0
Count of Molecity Decree Decidion Date 0.001 1000	•	^	•	•
Count of Velocity Pressure Readings Below 0.05 in H2O	1 001	0	1 004	4 000
Sensitivity Factor for Differential Pressure Gauge (T) Is Meter Box Manometer Adequate (Yes / No)?	1.00 1 YES	1.004	1.004 YES	1.003
IS MARKE DOX MANOMETER WORMING (168 / NO) (159	YES	159	

Test Date: September 27, 2007

MEASURED DATA FROM TEST RUNS

		Run	Pitot	Square	Orifice	DGM	Stack	
Point		Time	Delta P	Root of	Delta H	Temp	Pressure	Stack
Count	Run#	(min)	(in H2O)	Delta P	(in H2O)	OUT (°F)		Temp (°F)
1	1	0	0.69	0.831	1.40	69	-0.29	78
2	1	5	0.71	0.843	1.45	70	-0.29	78
3	1	10	0.73	0.854	1.50	71	-0.29	78
4	1	15	0.77	0.877	1.60	73	-0.30	79
5	1	20	0.82	0.906	1.70	74	-0.32	79
6	1	25	0.82	0.906	1.70	75	-0.31	80
7	1	30	0.60	0.775	1.20	75	-0.30	80
8	1	35	0.72	0.849	1.50	76	-0.33	80
9	1	40	0.80	0.894	1.70	76	-0.38	80
10	1	45	0.86	0.927	1.80	77	-0.38	79
11	1	50	0.86	0.927	1.80	77	-0.29	79
12	1	55	0.66	0.860	1.30	76		79
13	1	60	0.57	0.755	1.20	73	-0.22	73
14	1	65	0.58	0.762	1.25	74	-0.21	75
15	1	70	0.57	0.755	1.20	73	-0.12	77
16	1	75	0.59	0.768	1.30	73	-0.21	78
17	1	80	0.62	0.787	1.30	73	-0.24	78
18	1	85	0.58	0.762	1.30	73	-0.24	73
19	1	90	0.62	0.787	1.40	73	-0.32	73
20	1	95	0.70	0.837	1.60	73	-0.32	76
21	1	100	0.80	0.894	1.80	73	-0.34	78
22	1	105	0.86	0.927	1.95	74	-0.36	
23	1	110	0.84	0.917	1.90	74	-0.26	79
24	1	115	0.62	0.787	1.40	75		74
25	2	0	0.56	0.748	1.30	74	-0.21	80
26	2	5	0.56	0.748	1.30	74	-0.22	75
27	2	10	0.56	0.748	1.30	74	-0.20	74
28	2	15	0.56	0.748		75	-0.20	
29	2	20	0.60	0.775		75	-0.26	
30	2	25	0.62	0.787		75	-0.34	
31	2	30	0.65	0.806		75	-0.42	
32	2	35	0.72	0.849		75	-0.52	
33	2	40	0.81	0.900	1.78	75	-0.48	
34	2	45	0.85	0.922		74	-0.42	
35	2	50	0.81	0.900		75	-0.19	
36	2	55	0.76	0.872		75		79
37	2	60	0.64	0.800		73	-0.24	
38	2	65	0.68	0.825		73	-0.25	
39	2	70	0.68			73	-0.29	
40	2	75	0.70	0.837		73	-0.31	
41	2	80	0.77	0.877		74	-0.35	
42	2	85	0.72	0.849		74	-0.32	
43	2	90	0.60	0.775		74	-0.42	
44	2	95	0.70	0.837		74	-0.46	
45	2	100	0.81	0.900		74	-0.42	
46	2	105	0.82	0.906		74	-0.38	
47	2	110	0.82			74	-0.36	
48	2	115	0.70	0.837	1.54	74		73

MEASURED DATA FROM TEST RUNS

		Run	Pitot	Square	Orifice	DGM	Stack	
Point		Time	Delta P	Root of	Delta H	Temp	Pressure	Stack
Count	Run#	(min)	(in H2O)	Delta P	(in H2O)	OUT (°F)	(in H2O)	Temp (°F)
49	3	Ó	0.64	0.800	1.34	70	-0.27	76
50	3	5	0.67	0.819	1.40	71	-0.28	78
51	3	10	0.68	0.825	1.43	72	-0.30	78
52	3	15	0.70	0.837	1.48	73	-0.32	79
53	3	20	0.77	0.877	1.62	73	-0.34	73
54		25	0.73	0.854	1.53	74	-0.30	72
55	3	30	0.61	0.781	1.28	74	-0.34	76
56	3 3	35	0.77	0.877	1.62	74	-0.38	79
57	3	40	0.64	0.800	1.41	78	-0.32	79
58	3	45	0.88	0.938	1.94	75	-0.32	79
59	3	50	0.84	0.917	1.85	76	-0.26	73
60	3	55	0.68	0.825	1.50	76		72
61	3	60	0.55	0.742	1.11	75		75
62	3	65	0.57	0.755	1.20	74	-0.24	74
63	3	70	0.46	0.678	0.97	75	-0.24	77
64	3	75	0.55	0.742	1.21	75	-0.24	78
65	3	80	0.60	0.775	1.32	76	-0.26	
66	3	85	0.52	0.721	1.14	77	-0.28	
67	3	90	0.56	0.748	1.23	77	-0.38	
68	3	95	0.65	0.806	1.43	77	-0.39	74
69	3	100	0.85	0.922	1.87	77	-0.39	
70	3	105	0.90	0.949	2.07	78	-0.40	
71	3	110	0.87	0.933	2.00	78	-0.22	
72	3	115	0.82	0.906	1.90	79		79

TEST DATA

	Run 1	Run 2	Run 3	Average
CONCENTRATION CALCULATIONS				
Calculate the Total ug's of Cr in Each Sample	NEW CO.	202		
Vml (Volume of impinger plus rinses) (ml)	477	476	474	476
C (Concentration of Cr in sample) (ug Cr/ml)	0.02500	0.01940	0.02270	0.02237
F (Dilution Factor=Vol.of aliquot after dilution/Vol. of aliquot before dilution) (ml/ml)	1.0	1.0	1.0	1.0
D (Digestion Factor=Vol. of sample aliquot after digestion / Vol. of sample aliquot submitted to digestion)(ml/ml)	0.500	0.500	0.500	0.500
(Digestion Factor is typically 0.5)		-0.		
Total Cr in each field sample (ug)	5.96	4.62	5.38	5.32
Chromium Emission Results				
Vmstd (Dry Standard Volume Metered on DGM) (dscm)	2.169	2.213	2.155	2.179
Measured Chromium Concentration (mg/dscm)	0.00275	0.00209	0.00250	0.00244
Chromium Concentration (lb/dscf) 1	1.716E-10	1.303E-10	1.558E-10	1.526E-10
Chromium Emission Rate (Ib/hr)	0.00034	0.00026	0.00031	0.00030
Chromium Concentration (ppmv)	0.00127	0.00097	0.00115	0.00113
Chromium Emission Rate (mg/hr)	155.75	117.27	139.36	137.46

EPA Methods 1, 2, 4, and 306 Nomenclature and Sample Calculations Run No. - 1

Constants

CO ₂ F _{wt} = 44.0	in wg= 0.073529	NO ₂ F _{wt} = 46.01	HCIF _{wt} = 36.46
$O_2F_{wl} = 32.0$	gr= 0.000142857	COF _{wf} = 28.01	SO ₂ F _{wt} = 64.06
CON ₂ F _{wi} = 28.0	mmBtu= 1000000 Btu	H ₂ SO ₄ F _{wt} = 98.08	Cl ₂ F _{wt} = 70.91
H ₂ OF _{wl} = 18.0	CF _{wt} = 12.011	T _{std} = 528	$P_{std} = 29.92$

Stack Variables

Cp=	0.84	pitot tube coefficient (dimensionless)
P _{bar} =	29.17 in. Hg	barometric pressure
E _{box} =	57 ft	elevation difference between ground level and meter box
E _{sam} =	57 ft	elevation difference between ground level and sampling ports
γ =	0.9957	gamma, dry gas meter calibration factor (dimensionless)
θ =	120.0 min	net run time (minutes)
V _{1c} =	43.6 g	total mass of liquid collected in impingers (g)
A =	12.3318 ft ²	stack cross-sectional area
P _g =	-0.29 in. H ₂ O	flue gas static pressure
$T_{\text{savg}} =$	537.58 R	average absolute flue gas temperature (460R+tsavg °F)
SQAP =	0.84 in. wg	average square root ΔP
ΔH =	1.51 in, wg	average pressure differential of orifice meter
T _m =	533.75 R	dry gas meter temperature (460R+tsavg °F)
V _m =	79.61 ft³	volume of metered gas sample (dry actual cubic feet)
D _n =	0.213 in.	sampling nozzle diameter

Calculated Stack Variables

Barometric pressure at sampling location

NOTE: Barometric pressure recorded at ground level

$$P_{sam} = P_{ber} - \{ (E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg} \}$$

$$P_{sem} = 29.17 - ((57.0 / 100) * 0.1)$$

$$P_{sam} = 29.12 \text{ in. Hg}$$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * \{ P_{bar} - (\{ (E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg} \} + (\Delta H / 13.6)) / P_{std} \} * (T_{std} / T_{m})$$

$$V_{mstd} = 0.9957 * 79.609 * ((29.17 - ((57.0 / 100) * 0.1) + (1.5104 / 13.6)) / 29.92) * (528.0 / 533.750)$$

$$V_{mstd} = 76.594 \text{ ft}^{3}$$

Volume of water vapor at standard conditions (68 °F, scf)

$$V_{wstd} = (0.04715 \text{ ft}^3/\text{g}) * \text{Vic}$$

$$V_{wstd} = (0.04715 * 43.6)$$

$$V_{wstd} = 2.1 \text{ ft}^3$$

Percent moisture by volume as measured in flue gas

```
\%H_2O (Measured) = 100 * [V_{westd} / (V_{westd} + V_{mestd})]

\%H_2O (Measured) = 100 * (2.056 / (2.056 + 76.594))

\%H_2O (Measured) = 2.61
```

Absolute flue gas pressure

$$P_a = P_{sam} + (Pg / 13.6)$$

 $P_b = 29.12 + (-0.29 / 13.6)$
 $P_b = 29.09 \text{ in. Hg}$

Dry mole fraction of flue gas (dimensionless)

$$M_{fd} = 1 - (\%H_2O / 100)$$
 $M_{fd} = 1 - (2.61 / 100)$
 $M_{fd} = 0.974$

Dry molecular weight of flue gas (Ib/Ib-mole)

$$\begin{aligned} &M_d = \text{[(\%CO_2/100)^444.0] + [(\%O_2/100)^32.0] + [((100-\%CO_2-\%O_2)/100)^228.0]} \\ &M_d = \text{((0.00/100)^444.0) + ((0.00/100)^32.0) + (((100-0.00-0.00)/100)^228.0)} \\ &M_d = &28.00 \text{ |b/|b-mole} \end{aligned}$$

Wet molecular weight of flue gas (Ib/Ib-mole)

$$M_s = M_d * M_{Id} + (H_2OF_{wt} * (\%H_2O / 100))$$

$$M_s = 29.000 * 0.974 + 18.00 * (2.61 / 100)$$

$$M_s = 28.71 |bb/b-mole$$

Average flue gas velocity (ft/sec)

$$v_s = 85.49 \, ^{\circ}Cp \, ^{\circ}(SQ\Delta P_{evg}) \, ^{\circ}(T_{evg}/(P_s \, ^{\circ}M_s))^{0.5}$$
 $v_s = 85.49 \, ^{\circ}0.84 \, ^{\circ}(0.8411) \, ^{\circ}(537.58 \, / (29.094 \, ^{\circ}28.712)) \, ^{\circ}0.5$
 $v_s = 48.46 \, \text{ft/sec}$

Wet volumetric flue gas flow rate at actual conditions (acfm)

Wet volumetric flue gas flow rate at standard conditions (scfm)

$$Q_{sdw} = v_s * A * (T_{std} / T_{savg}) * (P_b / P_{std}) * 60 sec/min$$

$$Q_{sdw} = 48.455 * 12.332 * (528.0 / 537.583) * (29.094 / 29.92) * 60$$

$$Q_{sdw} = 34,241 \ ft^3/min$$

Dry volumetric flue gas flow rate at standard conditions (dscfm)

$$Q_{sd} = M_{td} * v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min}$$

$$Q_{sd} = 0.974 * 48.4551 * 12.3318 * (528.0 / 537.583) * (29.094 / 29.92) * 60$$

$$Q_{sd} = 33.346 \text{ ft}^3/\text{min}$$

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

%I =
$$(P_{\text{skd}} / T_{\text{std}}) * (T_{\text{savg}} / P_{\text{s}}) * [V_{\text{mskd}} / (v_{\text{s}} * M_{\text{kd}} * \theta * \pi * (D_{\text{n}} / 2)^{2})]$$

%I = $((((29.92 / 528.0) * (537.583 / 29.094)) * (76.594 / (48.4551 * 0.974 * 120.0 * (()3.141593 * (0.213 / 2) * 2) / 144))) / 60) * 100$
%I = 95.4 %

Method 306 Calculations

Total Cr catch weight (ug)

Total Cr concentration (mg/dscm)

$$C_{gram} = 5.96/2.169$$

					Meth	100 300 1	: ineti	c Fleia D	ata						
Plant	ý.	Bf Goodrich Plati	na		Meter box	no	T-MTB-	1213		Gamma	.995	7			
Location	<u> </u>	P002 Exhaust St			Pump no.		T-PMP-	013		K Factor	2.05	121	121	5/2.25	
Run no.		T	JUN (D)		Nomograpi	h no.	T-NOM-			Nozzle Si		2/3		<i></i>	
Test sta		8:26			Probe no.		T-PRB-	602			c pressure,	in.Ha	2.17	DPG	-1
Test sto		10 30	>		Filter box n	10.	T-FLB-	006			emperature,		30		
			001	-	Impinger b		T-IMB-	009		-	temperature		Gara	sient	70
	st leak rate		001		Umbilical c		T-UMC-	60 7			perature se			icat	
		check - 1 fotal	static		Umbilical a			012			Jate setting				50
	st pitot leal				Orsat bag					Meter box	operator	65	Date	9-27-0	7
	CLOCK	DRY GAS	PITOT	ORIFIC	ΣΕ ΔΗ	PROBE	STACK	DRY	GAS	OVEN	IMPINGER	PUMP	ORSAT	STATIC	1
POINT	TIME	METER	In. H₂O	In. I	H ₂ O	TEMP	TEMP	TEN	1P, °F	TEMP	TEMP	VACUUM	FLOW	PRESSURE	
	min	CF	ΔP	DESIRED	ACTUAL	°F	۰F	INLET	OUTLET	¹°F	°F	in.Hg	SCFH	± In.H ₂ O	1
7	0	734.275	,69	1.41	1.40	68	78		69	67	56	1.0	7-	1.29	1
2	5	737.37	21	1.46	1.45	68	78		70	69	5-2	1.0		- 29	1
3	ΙÖ	74065	. 73	1.49	1.50	69	78		71	68	53	7.0		- 29	1
4	.15	743.94	27	1.574	1.60	69	79	1.50	23	68	56	1.5		- 36	1
5	20	747.42	82	1.68	1.)0	10	20		24	68	60	1.5		32	1
6	25	751.00	32	468	1.70	70)9 30		75	69	62	1.5		3 /	1
7	30	254.17	160	1.23	1.3	71	20	1 -	75	69	5)	1.0		30	1
8	35	257-47	72	1.512	1.5	20	80		126	69	56	1.0		-,33	1
9	40	760.77	460	1.64	1.7	109	TIG		76	69	5-5-	1.5		- 38	1
lo	45	31,4.34	. 86	1.80%	1 4	49	79		22	69	54	1.5		38	1
11	50	768.04	, 86	1.806	1.4	28	79		77	68	55	1.5	1	29	1
12	55	771.24	.66	1.32	1.3	6 B	79		710	69	35	1.0			1
	60	774.824	.57	1.225	1.2	46	73	1	73	67	54	1.0		- ,22	1
2	65	777. 40	58	1,247	1,25	66	75	1-1-	74	67	50	1.0		21	1
3	70	780.65	157	1.225	1.2	66	77		23	66	49	1.0		12	1
Ý	75	783 97	.59	1,269	1.3	67	78		73	66	49	4.0		-,2/	1
5	50	796 72	,62	1.333	1.3	62	78		73	66	50	1.0		24	1
4	85	789-74	,54	130%	1.3	67	73	1-1-	73	627	50	10		24	1
7	70	792.77	.62	7.395	1.4	67	73	1 1	73	64	5-7	1.0		32	1
R	95	795.98	. 5	1.575	1.6	67	76	-	72	67	5.2	1.5		- 32	1
7	100	799,52	.5	1.8	1.8	108	748		23	67	62	1.5		34	1
10	105	40).20	. 86	1.935	1.95	60	Da		24	62	52	2.0		-, 36	1
U	110	20108	34	1.39	1.90	100	74		14	68	52	1.7		- 26	1
ià	115	810.71	60	2015	1.4	30	79		75	64	53	1.0			
2015	7714	<i>a</i>)7t		0.00/ Mo						L]
Final	120	417 acu			,			,							

Nomograph Calibration Variables LCSE Check 77
at port change Tm Ps Comments: =-0.10 Test Observers -

Job Number: <u>070920 B</u>
Done By / Date: <u>ξ δ</u> <u>-/ 7-27-</u> ω 7

Final Check By / Date: <u>ρ</u> <u>- γ/λλίο</u>?

Method 306 Ir etic Field Data

Plant	Bf Goodrich Plating	Meter box no.	T-MTB-	013	Gamma . 99.57
Location	P002 Exhaust Stack (B)	Pump no.	T-PMP-	013	K Factor 2.3 /2.2/
Run no.	2	Nomograph no.	T-NOM-		Nozzle Size, in. ,2/2
Test start tim	ne 10:52 :73	Probe no.	T-PRB-	603	Barometric pressure, in.Hg 29,17
Test stop tim	ne /3:03	Filter box no.	T-FLB-	004	Ambient temperature, °F 68
Pre-test leak	rate @ 15in.Hg	Impinger box no.	T-IMB-	021	Filter box temperature setting, °F andicat
Post-test lea	ik rate @ ス in.Hg 、ひひろ	Umbilical cord no.	T-UMC-	607	Probe temperature setting, °F a m6/cn1
Pre-test pitot	t leak check - total static	Umbilical adapter no	. T-UMA-	020	Orsat flow rate setting, SCFH
Post-test pito	ot leak check - total static	Orsat bag no.			Meter box operator Q.5 Date 9-22.

	CLOCK	DRY GAS	PITOT	ORIFIC	ΣΕ ΔΗ	PROBE	STACK	DR	Y GAS	OVEN	IMPINGER	PUMP	ORSAT	STATIC
POINT	TIME	METER	in. H₂O	In. H	I ₂ O	TEMP	TEMP	TE	MP, °F	TEMP	TEMP	VACUUM	FLOW	PRESSURE
	mln	CF	ΔΡ	DESIRED	ACTUAL	۰F	· °F	INLET	OUTLET	°F	۰F	In. Hg	SCFH	± In.H₂O
1	0	8/4,287	.56	1.288	7.3	70	40	\mp	74	70	60	1.0.		-,21
2	5	17,45	.56	1,288	1. 3	70	75		74	70	57	1.0		22
3	10	820.59	. 56	1-288	7.3	70	74		74	69	53) · O(-20
4	15	\$23.74	.56	1.288	1-3	70	76		75	69	5-3	1.0		-20
5	20	82690	ن ما.	1.38	1.4	70	79		75	69	52	1.0		-126
6	25	930.11	162	1,426	1.45	69	79		75	68	5-2	1.0		34
7	30	833.37	,65	1-495	1.5	69	79		75.	68	5-2	1.0		-42
8	35	836.66	,72	1.5 84	1.6	68	74		75	68	52	1.0		52
9	40	740.19	-81	1.78	1:78	68	73		75	68	53	10		-48
Ìυ	45	843.88	.85	1.97	1.87	68	75		74	67	53	1.0		- 42
11	50	847.607	(4)	1.78	1.80	68	78		75	48	54	1.0		-,19
12	43	751-33	.70	1.672	1.70	68	79		75		54	1,0		
	40	35 TO	64	1.408	1.41	67	73		73	67	55	7.0		-, 24
2	62		BST.4.68		1.50	,61	76		73	67	52	1.0		25
	70	561.44	.68	1.496	1.50	68	28		23	67	52	1.0		29
4	75	864,79	20	1.54	1.55	46	79		73.	62	53,	60		31
_5	80	866.10	.22	1.694	1.70	68	79		74	(0)	54	1.0		-135
4	85	971.61	1.72	1.584	1.58	69	73		74	67	55	1.0		32
7	90	875.00	.60	1.32	1.32	68	72		74	67	56	1.0		-,42
5	95	876.09	,70	1.54	1.55	68	76		74	67	57	10		46
9	100	881.31	प्र	1.78	1.80	68	78	\longrightarrow	74	62	58	(.0		- 43
10	105	88503	187	1,804	1.80	68	79		74	67	5^7	1.0		38
11	riv	98 8.13	42	1.804	1.80	68	79		74	66	57	1.0		36
12	115	892.41	\$ 76	1.54	1.54	68	73		24	66	57	1.0	\vdash	
	1000	005100	1000	Street I										
Final	120	895,699	190	XCp ,8	4 70	Tm		De [Pm	ΔP	Bws		1	
Commer	ite:		4 1 - 00	<u> </u>	7 Ts	Tm		Ps	- FIN	. الآي	D49			
COMME	11.5.	· C ·	1/34	5	-122) }			8548	89 +	0 45	5.02	8	
Test Obs			<i>., -,</i>	· U`					<i>V</i> / (/ <i>V</i>			-	- 0'	137

Air Compliance Testing, Inc.

(Method 306.xis-Isokinetic Field Data) 9/13/2007

Job Number: 070920 B

half way Done By / Date: 65 1 9-27

Final Check By / Date: 10/2007

Date 9-22.0

Method 306 is inetic Field Data

		0.00	D*					4. . •		HO.	995	7			
Plant		Bf Goodrich Plati			Meter box r	10.	T-MTB- (<u> </u>		Gamma			120	- / 1 3	
Location		P002 Exhaust St	ack (B)		Pump no.		T-PMP-	013_		K Factor	201	12.2	12.2	/2.3_	£8
Run no.		3			Nomograph	n no.	T-NOM-			Nozzle Siz		2/3	9.17		-
Test sta		13:38	,,		Probe no.	_	T-PRB-	(0)2			c pressure,		80	Urc	2
Test sto		16:01	007		Filter box n		T-FLB-	006		Filter box	emperature, temperature	cotting °E	~	. ' K	-01
	leak rate		70 I		Umbilical co		T-IMB- T-UMC-	005		Probo tom	perature se	tting °E		sient	20
		@	static	1	Umbilical a			60			rate setting		7718	11011	-0
		check - ✓ total	static		Orsat bag		1-UIVIA-			Meter box		P 5	Date 4	7-27-07	**
1 031-163															1
	CLOCK	DRY GAS	PITOT	ORIFI		PROBE	STACK		RY GAS	OVEN	IMPINGER	L ·	ORSAT	STATIC	
POINT	TIME	METER	ln. H₂O	ln. I		TEMP	TEMP		MP, °F	TEMP	TEMP	VACUUM		PRESSURE	
	min	CF	ΔΡ	DESIRED	ACTUAL	°F	°F .	INLET		۰۴	°F	in.Hg	SCFH	± in.H ₂ O	1
(0	896.940	.64	1.34	1.34	66	76		70	66	64	2.0		-27	1
2	5	900.02	(4)	1.407	1.40	66	78		71	66	61	2.0		- 128	
3	ľΟ	903.16	.68	1-428	1.43	67	18		72	66	58	2,0		7.30	
P	15	906.33	.70	1.47	1,48	67	79		73	66	52	'え.0		-,32	1
5	20	909.50		1.607	1.62	67	73		73	66	58	2.2	100	7,34]
6	25	912.88	73	1.533	1.53	67	72.		79	66	55	22		-130	
7	36	916.19	61	1.241	1.24	106	76		74	66	54	2.0		-, 34	
8	35	91955	.77	1.62	1.62	66	79		74	66	53	2.<		7.38	1
9	90	922.78	64	1.41	1,41	66	79		75	05	51	2.0		- 32]
ic	45	426.04	.88	1.936	7.94	66	79		75	65	50	3.0		32	
11	50	929.81	454	1,848	1.85	66	73		76	65	52	3.0		26	1
12	55	933.60	.68	1,450	1.50	66	72.		76	65	52	25			-
37	160	936.965				67	75.	- t	75	66	51	2.0			1
2	65	940. 18	,5)	1.197	1/2	67	24.		74	66	49	2.0		- 124	1
3	70	943.87	46	966	95	7.7	77.		75	66	50	45		24	1
4	25	946.63	: 55	1.21	1.21	67	28		75	66	50	1.5		- 124	1
4	80	049 34	.60	1.32	1,25	62	79		76	66	5-1	1.8		26	1
6	85	952.46	52	1144	1:14	68	79	-	55	67	51	1.5		-,28	1
5	90	955,34	156	1,232	1,2.3	67	72		1 55	67	52	1.5		- 38	1
8	95	958.30	165	1.43	1 42	68	24		22	67	52	2.0	\vdash	-, 39	1
7	No	961.49	35	182	1.43	68	28		75	67	52	3.0		~.39	1
_	100		.90	2.07	2.07	68	29	-	78	67	5-3	3.5	+	- 40	1
10	110	765,21	87	79					79	67	52	3.5	+	22	1
11	(15	96937	,42	1886	100	68	38		19	65	54	3.0	+ +		1
13	. นา	79.5.19	1400	1.800	1.90	69	7-7	1	179-	- D	 	3.0	 		1
L Ginal	120	672 A 2 8		L.			D-1018	1 .			.l			-	4
Final		1 977. ♦28 tion Variables	J . ΔH@	Ср	Ts	Tm	1	Ps	Pm	ΔΡ	Bws				
Commer		NOT VARIABLES	பாயு	С <u>Б</u>	13		, ,			936.90		932	734		-
Comme	1131	P	14.3	0 -1	501	- (Pak Ch	Kek		! -/ / ;				hock	-
Test Obs	servers -	-1 ·	11-3	0 -1	<i>/</i> , — —		1Oa		ange		- 0.76		V		-
-				Post	check	,003	ر م	·		7	****	·)	oh Nivesh	er: 070920 B	
	_			Port	charge		_			(Jone-By / F	Jate. &	5 -1-2-27	- ()
A C .	- liana	Tacting Inc			V -		35.5.5.50					/ 1/10 DY / L	ruito. 🗨	/ ~~/ \\ \\ \\ \	. –

liance Testing, Inc.
Als-Isokinetic Field Data) 9/13/2007 Air C

Job Number: 070920 B

Done-By / Date: 85 -19-27-07

Final Check By / Date: 10121107

Method 4 Moisture Recovery

Plant Name Bf Goodric	h Plating	Shop Balance ID - A-BA	AL- Prepare	d By ∯ S
Location P002 Exha	aust Stack (B)	Field Balance ID - A-BA	AL-007 Preparation	on Date pol 27/01
Run Number	1	2	3	4
Run Date	9-27-07	9-27-07	9-27-07	n
Analysis Date	9.27.07	9-27-07	9-27-07	
Time of Analysis	11:14	14:46	16:45	
Turbidity / Color	dearl wave	clear/None	-cker/2016	
(Clear, Cloudy, Suspended Part	iculates, etc.)			
Impinger #1	_			
Final Weight (g)	617,5	700.4	120.3	a <u> </u>
Tared Weight (g)	599.3	_682.7_	603.7	n=====================================
Condensed H₂O (g)	18-2	17.7	16:6	,
lmpinger #2				
Final Weight (g)	668.7	668.8	6832	
Tared Weight (g)	_663.0	662.9	678.1	
Condensed H₂O (g)	<u> </u>	5.9	<u> 5-1</u>	
Impinger #3				
Final Weight (g)	579.4	587.7	580.2	
Tared Weight (g)	576.6	585.5	<u>578.3</u>	
Condensed H ₂ O (g)	2.8	2.2	1-9	
Total Condensed (g)	26.7	25.8	23-6	
SILICA GEL				
Final Weight (g)	891.4 s.	890.9	819.1	
Tared Weight (g)	874.5	875.4	894.2	
Adsorbed H ₂ O (g)	16.9	15.5	14.9	
Total H ₂ O Collected (g)	43-6	41.3	38.5	

Job	Number:	070920 B
	_	

Plant Name_Bf Goodrich Plating		Location	P002
Reagents	s Prepared By	AS	/ Date
	Run 1	Run 2	Run 3
Run Date	9/27/07	9/27/07	9/27/07
Analysis Date	9/27/07	9/27/07	9/27/07
Time of Analysis	11:14	14:46	16:45
IMPINGER #1			
Final Weight (g)	617.5	700.4	620.3
Tared Weight (g)	599.3	682.7	603.7
Condensed H₂O (ml,g)	18.2	17.7	16.6
IMPINGER #2			
Final Weight (g)	668.7	668.8	683.2
Tared Weight (g)	663.0	662.9	678.1
Condensed H ₂ O (ml,g)	5.7	5.9	5.1
IMPINGER #3			
Final Weight (g)	579.4	587.7	580.2
Tared Weight (g)	576.6	585.5	578.3
Condensed H ₂ O (ml,g)	2.8	2.2	1.9
Total Condensed (ml,g)	26.7	25.8	23.6
SILICA GEL			
Final Weight (g)	891.4	890.9	899.1
Tared Weight (g)	874.5	875.4	884.2
Adsorbed H ₂ O (ml,g)	16.9	15.5	14.9
Total H ₂ O Collected (ml,g)	43.6	41.3	38.5
Analytical Balance ID	A - BAL <u>- (</u>	007	

Method 1 - Cyclonic Flow Determination

Plant N	Name Bf Goodric	h Plating						
City, S	tate Cleveland,	ОН	71					
Test L	ocation P002 Exha	oust Stack (B)						
Pitot I.	D T- PIT-601		Manor	eter I.D T - MIB-	013	Umbilio	all.D. T- MZU-	510
Run N	umber -		Run Nu	ımber -		Run Nı	ımber -	/
Date -	7.26.6	7	Date -		/	Date -		
Bar. P	res. (in. Hg)- 29	13	Bar. Pr	es. (in. Hg)-		Bar. Pr	es. (in. Hg)	
Barom	eter ID- T-DPG-	-004	Barome	eter ID-		Barom	eter ID-	
Start T	ime- 15:41	l	Start Ti	me -		Start T		
Finish	Time - 16:65 eter Zero and Level - Yes	,	Finish 7	Time -		Finish '	Time -	
Manome	eter Zero and Level - Yes	ਰ	Manome	ter Zero and Level - Yes	- /	Manome	ter Zero and Level - Yes	- /
Apparat	us Leak Check - Done By:) 6	Apparatu	is Leak Check - Done By:	/ /	1	is Leak Check - Done By:	/ 4
Pre Imp	act Side - Pass1⊠		Pre Impa	ict Side - Pass □	/	1	ct side - Pass □	/
Pre Stat	ic Side - Pass 🗸		Pre Stati	c Side - Pass □		Pre Stati	c Side - Pass □	
Test			Test		/	Test		/.
Point	Notes	Yaw Angle (°)	Point	Notes	Yaw Angle (°)	Point	Notes	Yaw Angle (°)
1	5	- 23	1			1	(10) R 10	
2		-24	2			2		
3		- 22	3		/	3		
4		- 20	4			4		
5		-18	5			5	94	
6		~13	6	· ·		6	,(E)	(0))
7		÷ []	7			7		
8		14	8			8		
9		15	9			9		
10		15	10			10		
11	15.42	5	11			11		
12		5	12			12		
13		-19	13			13		
14		-17	14			14		To See
15		-17	15		e e	15	4	
16		-17	16			16		
17		-16	17			17		
18		-15	18			18		
19_		es il	19			19		
20		[5	20			20		
21		16	21			21	<i></i>	
22		18	22	/		22	<u> </u>	
23		3	23 /			23		
24_	13.83	2	24			24		
25	D 1		25			25/		
	Avg.	14.63		Avg.		\prod	Avg.	
Appara	tus Leak Check - Done By:		Apparat	us Leak Check - Done By:	8	Apparat	us Leak Check - Done By:	
Post Im	pact Side - Pass'		Post Imp	oact Side - Pass □		11 /	oact Side - Pass □	
	atic Side - Pass D		10	tic Side - Pass D		1/	itic Side - Pass □	=

Yaw angle is the angle measured from the point where zero ΔP should be obtained to the point where zero ΔP is actually obtained

Job Number: 070920 B Checked By / Date:

Method 1 Preliminary Field Data-Round - Round Stack

Plant	Bf Goodrich Plating	
City, State	Cleveland, OH	
Location	P002 Exhaust Stack (B)	

Duct Depth (Inner Diameter)

Relative Location

From Far Inside Wall to Outside of Port (in.)

Nipple Length and/or Wall Thickness (in.)

Nipple Protrusion (in.)

Stack or Duct Depth (Inner Diameter) (in.)

Stack Outer Circumference (in.)

Port Hole Inner Diameter (in.)

Elevation of Meter Box from Ground Level (ft)

Elevation of Ports from Ground Level (ft)

Number of Ports

Direction of Flow

Isokinetic Sample (Yes / No)

Stack Particulate Build-up (Yes / No)

Port 1	Port 2	Port 3	Port 4
BoutL	tast		
49.6	49.7		
2.1	2.1		
0.0	0.0		
47.5	47.6		
_	-		
3.5	3.5	Y	

57
57
_ Z
upward
Yes
No

Distance Upstream from Flow Disturbance (in.)	
Diameters Upstream from Flow Disturbance (≥ 0.5 D _e)	0.61
Minimum Traverse Points Needed *	29

Distance Downstream from Flow Disturbance (in.)	128.0
Diameters Downstream from Flow Disturbance (≥ 2 D _e)	2.69
Minimum Traverse Points Needed *	_ 24

^{*}Circle Larger of the Two

Stack or Duct Area =

1775-79

in.2

	4	6	8	10	12	14	16	18	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	11.6	10.
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.
7			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.
8	1		96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.
9				91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.
10	l			97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.
11					93.3	85.4	78.0	70.4	61.2	39.3	32.
12					97.9	90.1	83.1	76.4	69.4	60.7	39.
13	l					94.3	87.5	81.2	75.0	68.5	60.
14						98.2	91 <i>.</i> 5	85.4	79.6	73.8	67.
15	l						95.1	89.1	83.5	78.2	72.
16	l						98.4	92.5	87.1	82.0	77.
17	l							95.6	90.3	85.4	80.
18	l							98.6	93.3	88.4	83.
19	l								96.1	91.3	86.
20									98.7	94.0	89.
21										96.5	92.
22										98.9	94.
23											96.
24											98.

Note

- Stacks having a diameter greater than 24in, shall have no traverse points located within 1.0in of the Stack walls.
- 2) Stacks having a diameter less than or equal to 24in, shall have no traverse points located within .50in of the Stack walls
- 3) Add nipple protrusion length to Point 1 only Actual nipple length = (length protrusion

Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger

Port Number	_1_	2	3	4
Relative Location	s	Ę	I	
From Far Watt to Outside of Port (in.)	49.60	49.70		
Nipple Length or Wall Thickness (in.)	2.10	2,10		
Port Protrusion Length (opt) (in.)	0 00	0 00	I = I	
Depth of Stack or Duct (in.)	47.50	47.60		
Stack or Duct Type	Elliptical			
Port Hole Inner Diameter (in.)	3.55			
Stack or Duct Width (If Rectangular) (in.				#N/A
Stack Outer Circumference (in.)				PIEA
Number of Ports	2.0			
Elevation of Ports from Ground Level (ft	57.0	į.	8	
Equivalent Diameter = D. (in.)				
De = 2 x (Depth x Width) (Depth + Width)	•		=	
"Velocity" or "Particulate" Traverse Distance Upstream from Flow Disturban	ce (in.)		Particulate	
Diameters Upstream from Flow Disturba	nce (* 0.5 D	e)	0.61	
Minimum Traverse Points Needed for a	Velocity Trav	" esnev	16	
Minimum Traverse Points Needed for a	Particulate T	raverse *	24	
Distance Downstream from Flow Disturb	ance (in.)		128.0	
Diameters Downstream from Flow Distu	rbance (* 2 i	De)	2.59	
Minimum Traverse Points Needed for a	Velocity Trav	verse "	16	
Minimum Traverse Points Needed for a	Particulate T	raverse *	24	
Minimum Traverse Points			24	
Traverse Poi ntOveride				
?	1775.79			
Duct Area - in ²				
Duct Area - ft ²			12.3319	

Locatio	n of	Po	i ntsin	Circ	ular S	tacks	or D	ucts
	-			_		-	-	

		•		10	12	14	15	18	20	-22	24
1	6.7	44	3.2	2.6	21	18	16	14	1.3	1.1	1.1
3	25.0	146	10.5	. B.2	6.7	57	49	4.4	3.9	3.5	3.2
3	75,0	29.5	19 4	14.6	11 8	9.9	8.5	75	6.7	60	5.5
4	93.3	70 4	32.3	22,6	17.7	146	12.5	109	9.7	8.7	7.9
5	l .	854	₩.7	34.2	25 0	201	16.9	146	12.9	11.6	10
6	t .	95.6	80.6	65.8	356	26.9	22.0	18.8	16.5	14.6	13.2
7	F		89.5	77.4	64 4	36,6	28 3	23.6	ZD 4	18.0	16.1
	1		96.6	85 4	75.0	63.4	37.5	29.8	25.D	21.8	19 4
8	1			91.8	823	73.1	62.5	39.2	30.8	26.2	23.0
10				97 4	86.2	79.9	71.7	618	36.6	31.5	27.2
11	1				93,3	854	76.0	70.4	61.2	359.3	32.3
12					97.9	90 1	831	76.4	69 4	60.7	39,8
13						94.3	67.5	81.2	75.D	E2.5	60.2
14						98 2	91.5	85,4	79.6	73 8	67, 3
15	1						95.1	89 1	63.5	78.2	72.8
15	ŀ						98 4	92.5	67.1	B2.0	77 (
17								95,6	90.3	85 4	80.8
18								99.6	93.3	88.4	83.9
19	1								96 1	913	86 5
20	1								98.7	B4 0	69.5
21	1									96 5	92.1
22										98.9	94 5
23	§										96 8
24											98.9

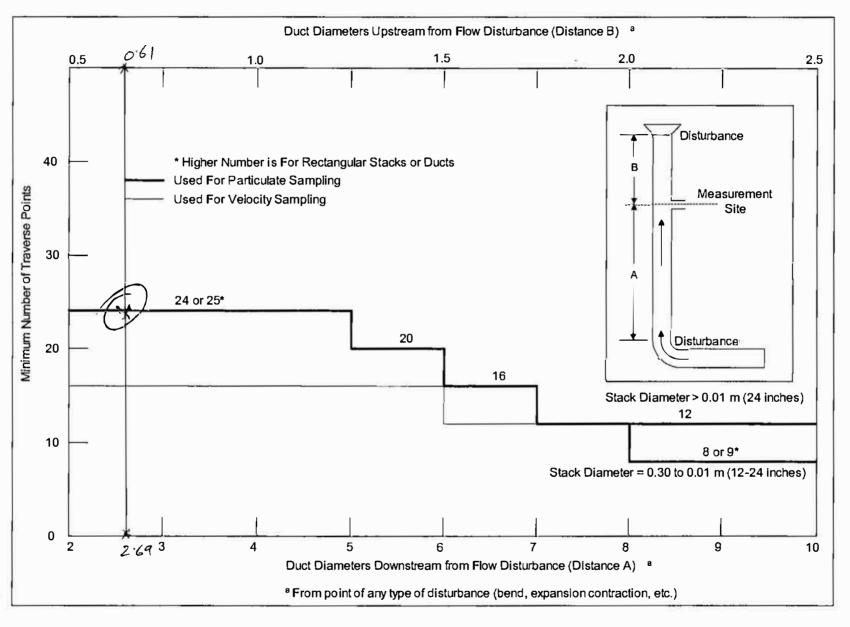
Location of Points in Rectangular Stacks or Ducts

	Note:
	1) Stacks having a diameter greater than 24in,
	shall have no traverse points located within
-	1 0in of the Stack walls.
	2) Stacks having a diameter less than or equal

to 24in, shall have no traverse points located within .50in of the Stack walls.

3) Add nipple protrusion length to Point 1 only.

Actual nipple length = (length - protrusion)


Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger.

Number of Ports:

Direction of Flow:
Isokinetic Sample: Yes / No
Stack Bulld-up: Yas / No

		% of	Dist. From	Dist. From
Port	Point	Duct	Inside Wall	Outside Wall
		Depth	(Decimal)	(Decimal)
1	1	2.1	1.0	3.1
1 (2	6.7	3.2	5.3
1	3	11.8	5.6	7.7
1	4	17.7	8.4	10.5
1	5	25	11.9	14.0
1	6	35.6	16.9	19.0
1	7	64.4	30.6	32.7
1	8	75	35.6	37.7
1	9	82.3	39.1	41.2
1	10	88.2	41.9	44.0
1	11	93.3	44.3	46.4
1	12	97.9	46.5	48.6
2	1	2.1	1.0	3.1
2	2	6.7	3.2	5.3
2	3	11.8	5.6	7.7
2	4	17.7	8.4	10.5
2	5	25	11.9	14.0
2	6	35.6	16.9	19.0
2	7	64.4	30.7	32.8
2	8	75	35.7	37.8
2	9	82.3	39.2	41.3
2	10	88.2	42.0	44.1
2	11	93.3	44.4	46.5
2	12	97.9	46.6	48.7

Method 1 Criteria Data

Test Location P002 Exhaust Stack (B) Job Number: 070920 B Done By / Date: JG / 9/26/07
Checked By / Date: PU / lob2(07. Final Check By / Date:

Method 4 Pre-Test Orifice Meter Check

	Method 4 Fie-Test Office	weter Check				
	Operate the Dry Gas Meter at the Δ H@ pressure differential. The Δ H@ number is taken from the Meter Console Calibra Record the Dry Gas Meter Volume (CF), Meter Temperature Barometric Pressure (in.Hg).	tion Sheet or the tag.				
Meter ID	T-MTB-013 Calibration Date:	8.3.07				
Dry Gas M Barometric		73(. 575 (V _{mf})	End			
∆H@ =	=1. 808	Time (min)	Meter in (°F)	Meter Out (°F)		
γ =	0.9957	2	ĺ	78		
V _m =	$= V_{\text{mf}} - V_{\text{mi}} = 7.575$	4		79		
	*	6	j	79		
360		8	. –	පිට		
		10		80		
	*	Avg		79.Z		
		Avg. of Avgs.		- 3		
Formula	_Calculate the Dry Gas Meter Calibration Value (γ_c) $\gamma_c = (\ 10\ /\ Vm\) * [\ 0.0319\ (Tm/Pbar\)\]^{1/2}$ $\gamma_c = (\ 10\ /\ 7.575^-\) \times [0.03]$		60) / 29	. <i>(</i> 3] ^{1/2}		
	Compare the γ_c value with the Dry Gas Meter Calibration F	actor γ to determine if:		9		
$0.97(\gamma) < \gamma_c < 1.03(\gamma)$ Calculate $0.97 \left($						

Operate the Dry Gas Meter at the ΔH@ pressure differential for 10 minutes.

The ΔH@ number is taken from the Meter Console Calibration Sheet or the tag.

Record the Dry Gas Meter Volume (CF), Meter Temperatures (°R = 460 + °F) and Barometric Pressure (in.Hg).

Meter Box No. **T-MTB-013**Calibration Date **3-Aug** - 01

ΔH@ = 1.808 γ = 0.9957

Initial Dry Gas Meter Volume	724.000
Final Dry Gas Meter Volume	731.575
Net Dry Gas Meter Volume	7.575

Barometric Pressure (inHg) 29.13

Time (min)	Meter In (°F)	Meter Out (°F)
2	78	78
4	79	79
6	79	79
8	80	80
10	80	80
Avg.	79.2	79.2
Avg. of Avgs.	79.2	

Calculate the Dry Gas Meter Calibration Value (γ_c)

$$\gamma_c = (10 / Vm) * [0.0319 (Tm/Pbar]^{1/2}$$

Compare the γ_c value with the Dry Gas Meter Calibration Factor γ to determine if:

$$0.97(\gamma) < \gamma_{c} < 1.03(\gamma)$$

Calculate

0.9658

<

1.0144

_

1.0256

PASS

If the γ_c is not within this range, the Dry Gas Meter should be investigated before beginning the test.

Method 4 Pre-Test Orifice Meter Check

Operate the Dry Gas Meter at the Δ H@ pressure differential for 10 minutes. The ΔH@ number is taken from the Meter Console Calibration Sheet or the tag.

Record the Dry Gas Meter Volume (CF), Meter Temperatures (°R = 460 + °F) and Barometric Pressure (in.Hg).

J.MTB-OIL Meter ID

Calibration Date: 8/3/07

Dry Gas Meter Volume

Barometric Pressure

$$\Delta H @ = 1.822$$

$$\gamma = 1.0154$$

Time (min)	Meter In (°F)	Meter Out (°F)
2	89	82
4	90	82
6	91	82
8	91	82
10	91	82
Avg.	90.4	82
Avg. of Avgs.	86.	2

Calculate the Dry Gas Meter Calibration Value (γ_c)

Formula

$$\gamma_c\!=\!(\ 10\ /\ Vm\)*[\ 0.0319\ (Tm/Pbar\)]^{\ 1/2}$$

Calculate

$$\gamma_c = (10/7.44/2) \times [0.0319(86.2+460)/29./3]^{1/2}$$

Compare the γ_c value with the Dry Gas Meter Calibration Factor γ to determine if:

$$0.97(\gamma) < \gamma_{c} < 1.03(\gamma)$$

Calculate

$$0.97 (1.0154) < 1.0392 < 1.03 (1.0154)$$
 of the γ_c is not within this range, the Dry Gas Meter should be investigated

before beginning the test.

pass

Operate the Dry Gas Meter at the $\Delta H@$ pressure differential for 10 minutes. The ΔH@ number is taken from the Meter Console Calibration Sheet or the tag. Record the Dry Gas Meter Volume (CF), Meter Temperatures (°R = 460 + °F) and Barometric Pressure (in. Hg).

T-MTB-011 Meter Box No. 8/3/2007 Calibration Date

411.000 Initial Dry Gas Meter Volume 418.442 Final Dry Gas Meter Volume 7.442 Net Dry Gas Meter Volume

1.822 ΔH@ = 1.0154

Barometric Pressure (inHg)

29.13

Time (min)	Meter In (°F)	Meter Out (°F)
2	89	82
4	90	82
6	91	82
8	91	82
10	91	82
Avg.	90.4	82
Avg. of Avgs.	86.	2

Calculate the Dry Gas Meter Calibration Value (γ_c)

$$\gamma_c = (10 / Vm) * [0.0319 (Tm/Pbar]^{1/2}$$

Compare the γ_c value with the Dry Gas Meter Calibration Factor γ to determine if:

$$0.97(\gamma) < \gamma_{c} < 1.03(\gamma)$$

Calculate

0.9849 < 1.0392

PASS

1.0459

If the γ_c is not within this range, the Dry Gas Meter should be investigated before beginning the test.

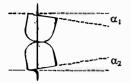
Method 306 Probe Nozzle Inspection

The sampling nozzle must be calibrated before use in a source experiment. Calibration should be done in the laboratory and checked just before use in the field. Inside / outside calipers are used to measure the interior nozzle diameter to the nearest 0.025mm (0.001 inch).

The calipers are inserted as close to the edge of the nozzle opening as possible; readings are taken on three separate diameters and recorded. The average of the three readings will be the Assigned Nozzle Size. Each reading must agree within 0.1 mm (0.004 inch), or the nozzle must be reshaped. Any nozzle that has been nicked, dented, or corroded must be reshaped and recalibrated. All calibrated nozzles should be permanently identified.

Run # Nozzle ID # Measured Nozzle Size (inches) D. 213 D. 213		Assigned Nozzle Size (inches)	Difference Between High and Low Measurements
Run # Nozzle ID #	2 D-6		
Measured Nozzle Size (inches)		Assigned Nozzle Size (inches)	Difference Between High and Low Measurements
0.212			
0.212		0.212	∅ .⊘⊘, <= 0.004in
0.212			
Run #_ Nozzle ID #_		'In	
Measured Nozzle Size (inches)		Assigned Nozzle Size (inches)	Difference Between High and Low Measurements
			<= 0.004in

Job Number: 070920 B
Done By / Date: 4 1 9-26-07
Final Check By / Date: 1 10/24/07


Method 306 Probe Nozzle Inspection

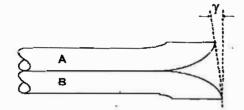
The sampling nozzle must be calibrated before use in a source experiment. Calibration should be done in the laboratory and checked just before use in the field. Inside / outside calipers are used to measure the interior nozzle diameter to the nearest 0.025mm (0.001 inch).

The calipers are inserted as close to the edge of the nozzle opening as possible; readings are taken on three separate diameters and recorded. The average of the three readings will be the Assigned Nozzle Size. Each reading must agree within 0.1 mm (0.004 inch), or the nozzle must be reshaped. Any nozzle that has been nicked, dented, or corroded must be reshaped and recalibrated. All calibrated nozzles should be permanently identified.

Run# Nozzle ID#	1-32 D-9	43		D. (7	
Measured Nozzle Size (inches)	Ass	signed Nozzle Size (inches)		Difference Between High and Low Measurements	
0.221					
0.221		0-221		0.00	_<= 0.004in
0.220					
Run# Nozzle ID#	1,2 As				
Measured Nozzle Size (inches)	Ass	signed Nozzle Size (inches)		Difference Between High and Low Measurements	
0.217					
0.217		0.217	4,	0.001	_<= 0.004in
0.217					
Run# Nozzle ID#					
Measured Nozzle Size (inches)	As	signed Nozzle Size (inches)		Difference Between High and Low Measurements	
	_				_<= 0.004in

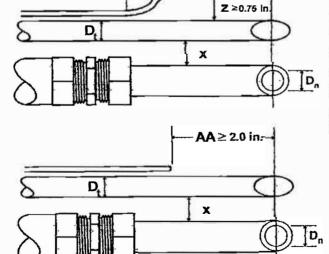
Pitot Tube Inspection

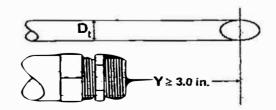
Degree indicating level position for determining α_4 and α_2 .



Degree indicating level position for determining β_1 and β_2 .

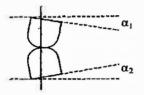
Degree indicating level position for determining θ .


Probe / Pitot Number	T-PRB-610
Level and Perpendicular?	Yes / No
Obstructions?	Yes / (No)
Damaged?	Yes / No
$\alpha_i (-10^\circ < \alpha_i < +10^\circ)$	-30
$a_2 (-10^{\circ} < a_2 < +10^{\circ})$	20
β_1 (-5° < β_1 < +5°)	10
β_2 (-5° < β_2 < +5°)	2°
Y	0
θ	0
A	1 .9)
z= A tan y (< 0.125")	1 18 0
w= A tan θ (< 0.03125")	1 780
D _t (0.1875" < D _t < 0.375")	1 ,370
P_A (1.05 D_t < P_A < 1.5 D_t)	48
P _B (1.05D _t < P _B < 1.5D _t)	1.48
P _A = P _B	(Yes) / No


Degree indicating level position for determining y then calculating Z.

W≥ 3.0 in.

Probe Minimum Interferences

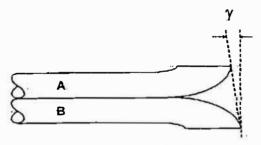


Effective Length (in.)	62'
W (≥ 3.0")	7.5"
OF AA /> 20m	
X	1.5
D_n	.497
X / D _a (≥ 1.5)	3,02
Y (≥ 3,0")	3.)
Z ≥ 0.75"	1.6"

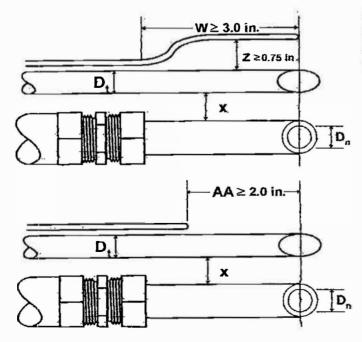
Job <u>Number:</u> 070920 Done By / Date: <u>85</u> / <u>9-2</u>6-07

Alignment and Tubing Dimensions

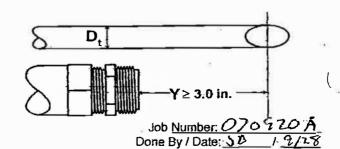
Degree indicating level position for determining α_1 and α_2 .

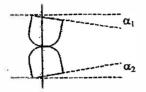


Degree indicating level position for determining θ .

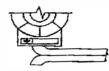


Degree indicating level position for determining y then calculating Z.

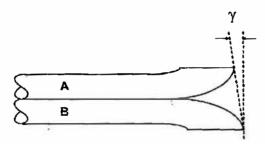

Probe / Pitot Number	PRB-610
Level and Perpendicular	Fee / No
Obstructions	Yes / Na
Damaged	Yes / No
$\alpha_1 (-10^{\circ} < \alpha_1 < +10^{\circ})$	~[O
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	-20
β ₁ (-5° < β ₁ < +5°)	-10
β_2 (-5° < β_2 < +5°)	20
γ	~3,0
θ	30000
A:	,950
z=-A tan γ (< -0.125")	,050"
w= A tan θ. (< 0.03125")	-,05.00
D_{t} (0.1875" < D_{t} < 0.375")	,375"
P_A (1.05D _t < P_A < 1.5D _t)	,4704
P_B (1.05D _t < P_B < 1.5D _t)	,4800
$P_A = P_B \pm 0.0625$	169 / No


Assembly Inter-Component Spacing Requirements

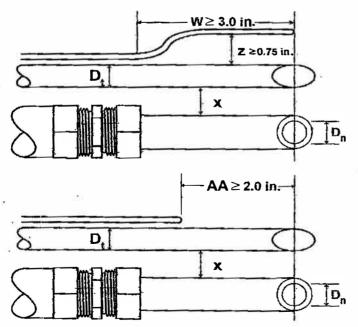
Effective Length (in.)	61"
W (≥ 3.0")	6.7"
-or- AA (≥ 2.0")	
X	,907
D_n	,497"
X / D _n (≥ 1.5)	1.82
Y. (≥ 3.0")	3.6"
Z ≥ 0.75"	1.51"


Alignment and Tubing Dimensions

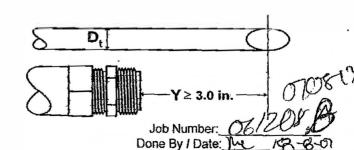
Degree indicating level position for determining α_i and α_2 .



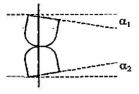
Degree indicating level position for determining θ .



Degree indicating level position for determining $\boldsymbol{\gamma}$ then calculating Z.

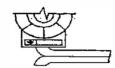

Probe / Pitot Number	PR13602
Level and Perpendicular	Po I No
Obstructions	Yes / Ab
Damaged .	Yes / No
$\alpha_1 (\sim 10^{\circ} < \alpha_1 < +10^{\circ})$	2
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	2
β_1 (-5° < β_1 < +5°)	a
β_2 (-5° < β_2 < +5°)	2
γ	3
θ	0
A	. 862
z= A tan y (< 0.125")	-004
w= A tan θ (< 0.03125")	0
$D_t (0.1875" < D_t < 0.375")$,375
P_A (1.05D ₁ < P_A < 1.5D ₁)	1,431
P_B (1.05 D_t < P_B < 1.5 D_t)	,431
$P_A = P_B \pm 0.0625$	(Pes)/ No

Assembly Inter-Component Spacing Requirements

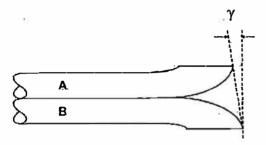


63"
6.6
.85
1,497
177
3.2
1917

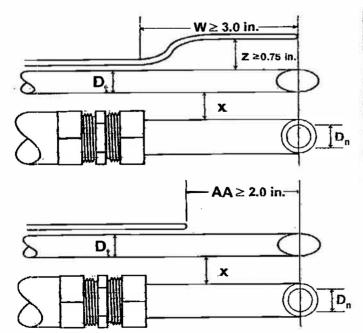
Air Compliance Testing, Inc. (Method 2.xls)


Alignment and Tubing Dimensions

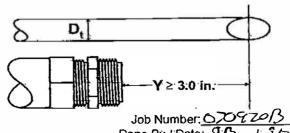
Degree indicating level position for determining α_1 and α_2



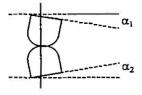
Degree indicating level position for determining θ .



Degree indicating level position for determining y then calculating Z.

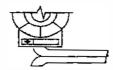

Probe / Pitot Number T	-PRB-60Z
Level and Perpendicular	Yes / No
Obstructions	Yes / No
Damaged	Yes / No
α_1 (-10° < α_1 < +10°)	0°
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	Z°
β_1 (-5° < β_1 < +5°)	10
β_2 (-5° < β_2 < +5°)	10
γ	0°
θ	60
Α	.878"
z= A tan y (< 0.125")	0"
w= A tan θ (< 0.03125")	0"
D_t (0.1875" < D_t < 0.375")	,375
P_A (1.05D ₁ < P_A < 1.5D ₁)	,4347
P_B (1.05D ₁ < P_B < 1.5D ₁)	44411
$P_A = P_B \pm 0.0625$	Yes / No

Assembly Inter-Component Spacing Requirements

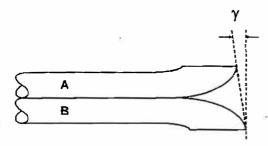


Effective Length (in.)	614
W (≥ 3.0")	6"
-or- AA (≥ 2.0")	<u> </u>
x	.874"
D _n	.995"
X / .D _n .(≥ .1.5)	1.77
Y. (≥ 3.0")	3.6"
Z ≥ 0.75°	.879"

Done By / Date: 3815

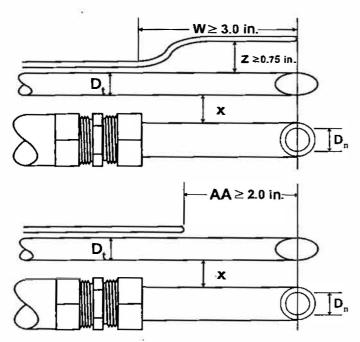

Alignment and Tubing Dimensions

Degree indicating level position for determining α_1 and α_2 .

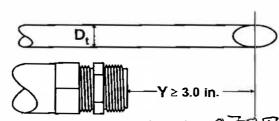




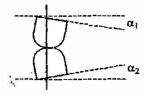
Degree indicating level position for determining $\theta_{\rm s}$



Degree indicating level position for determining γ then calculating \boldsymbol{Z}


T-PRB-6-3
Tes No
Yes L No
Yes W
-1
0
0
0
0
923
0
0
.374
,462
.461
Tes / No

Assembly Inter-Component Spacing Requirements

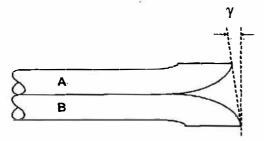


120	
Effective Length (in.)	63.0
W (≥ 3.0")	6.8
-or- AA (≥ 2.0")	←
Х	1.2
D _n	,497
X / D _n (≥ 1.5)	2.4
Y (≥ 3.0")	4.0
Z ≥ 0.75"	1, 3

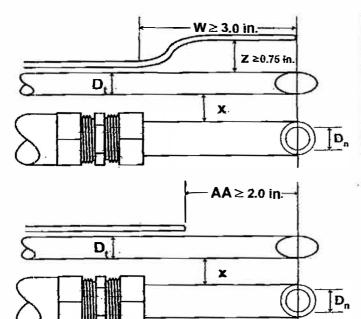

Job Number: 07080813 Done By / Date: 19/10/07

Alignment and Tubing Dimensions

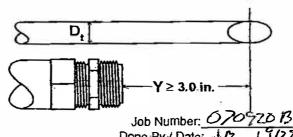
Degree indicating level position for determining α_1 and α_2 .



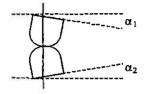
Degree indicating level position for determining θ .



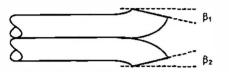
. Degree indicating level position for determining y then calculating Z.


Probe / Pitot Number T	-PRB-603
Level and Perpendicular	Øes / No
Obstructions	Yes / No
Damaged	Yes / AR
α_{i} (-10° < α_{i} < +10°)	ĺ
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	05
β_1 (-5° < β_1 < +5°)	O o
β_2 (-5° < β_2 < +5°)	10
γ	00
θ	10
A [.]	.932"
z= A tan y (< 0.125")	0"
w= A tan 0 (< 0.03125")	,01611
D _t (0.1875" < D _t < 0.375")	,375"
P_A (1.05D _t < P_A < 1.5D _t)	.431"
P_B (1.05D _t < P_B < 1.5D _t)	, 501 "
$P_A = P_B \pm 0.0625$	(eg / No

Assembly Inter-Component Spacing Requirements

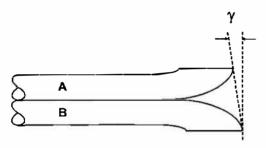


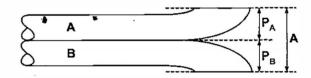
Effective Length (in.)	6011
W (≥ 3.0")	611
-or- AA (≥ 2.0")	-
x	1.06"
D_n	:49011
X / D _n (≥ 1.5)	2-16
Y. (≥ 3.0")	4.00
Z ≥ 0.75"	1.461"


Done By / Date: 」と

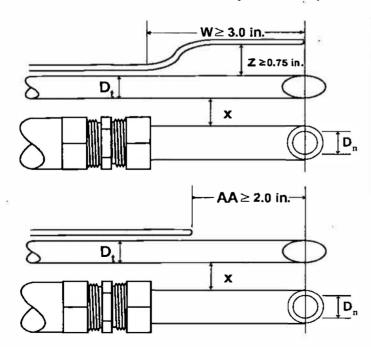
Alignment and Tubing Dimensions

Degree indicating level position for determining α_1 and α_2 .

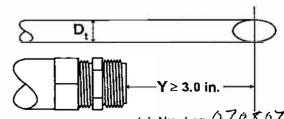




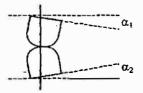
Degree indicating level position for determining $\boldsymbol{\theta}.$



Degree indicating level position for determining γ then calculating \boldsymbol{Z}

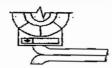

Probe / Pitot Number	PI7-601
Level and Perpendicular	√e)s / No
Obstructions	Yes / No
Damaged	Yes / No
α_1 $(-10^\circ < \alpha_1 < +10^\circ)$	
α_2 (-10° < α_2 < +10°)	*
β_1 (-5° < β_1 < +5°)	0°
β_2 (-5° < β_2 < +5°)	0°
γ .	-10
θ	60
A	,975"
z= A tan γ (< 0.125")	-,017"
w= A tan θ (< 0.03125")	0"
D_t (0.1875" < D_t < 0.375")	,372/
P_A (1.05D _t < P_A < 1.5D _t)	.461 "
P_B (1.05 $D_t < P_B < 1.5D_t$)	.514"
$P_A = P_B \pm 0.0625$	(Yes) (S)

Assembly Inter-Component Spacing Requirements

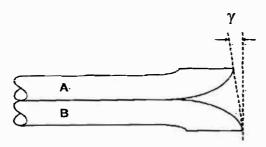

Effective Length (in.)	73''
W (≥ 3.0")	3,32"
-or- AA (≥ 2.0")	^ _
Χ	
D _n	~
X / D _n (≥ 1.5)	_
Y (≥ 3.0")	_
Z ≥ 0.75"	,756"

Job Number: 070867

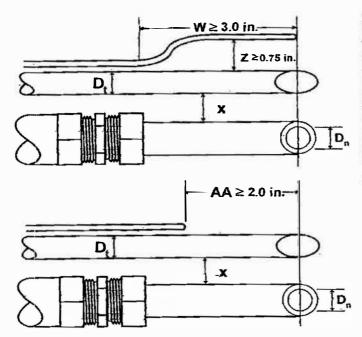
Done By / Date: JO 1 7/ 24/6


Alignment and Tubing Dimensions

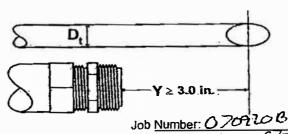
Degree indicating level position for determining & and a2.



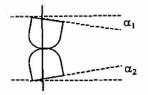
Degree indicating level position for determining θ .



. Degree indicating level position for determining y then calculating Z.


Probe / Pitot Number	- P1+-601
Level and Perpendicular	Ves / No
Obstructions	Yes / NO
Damaged	Yes / No
$\alpha_1 (-10^{\circ} < \alpha_1 < +10^{\circ})$	-10
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	00
β ₁ (-5° < β ₁ < +5°)	10
$\beta_2 \qquad (-5^\circ < \beta_2 < +5^\circ)$	00
γ	0.0
θ	-20
A	.789
z= A tan y (< 0.125")	OM
w= A tan 0. (< 0.03125")	-,035"
D_t (0.1875" < D_t < 0.375")	,375"
P_A (1.05 D_t < P_A < 1.5 D_t)	,481
P_B (1.05 D_t < P_B < 1.5 D_t)	.50%
$P_A = P_B \pm 0.0625$	Y@GS / No

Assembly Inter-Component Spacing Requirements

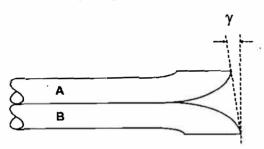


Effective Length (in.)	71"
W (≥ 3.0")	3.0"
-or- AA (≥ 2.0")	
X	_
D _n	_
X / D _n .(≥ 1.5)	_
Y (≥ 3.0")	T -
Z ≥ 0.75"	.75"

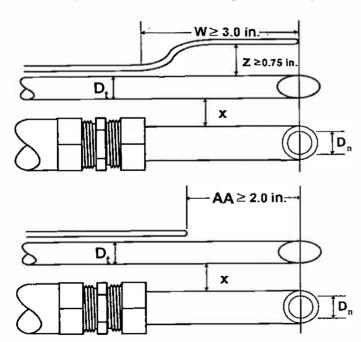
Done By / Date: 15/28

Alignment and Tubing Dimensions

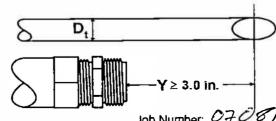
Degree indicating level position for determining α_1 and α_2



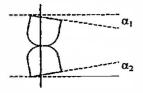
Degree indicating level position for determining θ .



Degree indicating level position for determining γ then calculating Z.


Probe / Pitot Number	T-PIT-76/
Level and Perpendicular	Yes No
Obstructions	Yes / Ne
Damaged	Yes / No
$\alpha_1 (-10^{\circ} < \alpha_1 < +10^{\circ})$	0
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	1
β_1 (-5° < β_1 < +5°)	-1
β_2 (-5° < β_2 < ÷5°)	-4
γ	0
θ	0
Α	951
z= A tan γ (< 0.125")	0
w= A tan θ (< 0.03125")	0
D_t (0.1875" < D_t < 0.375")	,374
P_A (1.05D _t < P_A < 1.5D _t)	,476
P_B (1.05D _t < P_B < 1.5D _t)	.475
$P_A = P_B \pm 0.0625$	Yes / No

Assembly Inter-Component Spacing Requirements

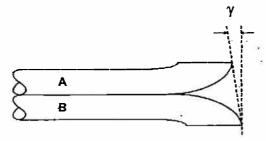


Effective Length (in.)	73.2
W (≥ 3.0")	
-or- AA (≥ 2.0")	2.2
х	
D _n	_ ~
X / D _n (≥ 1.5)	
Y (≥ 3.0'')	
Z ≥ 0.75"	

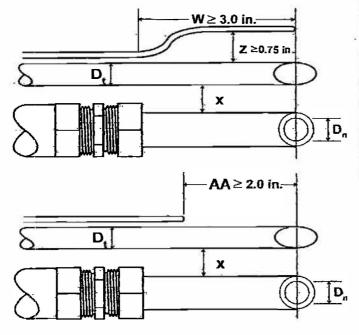
Job Number: <u>0708124</u> Done By / Date: <u>XC 18/24/0</u>7

Alignment and Tubing Dimensions

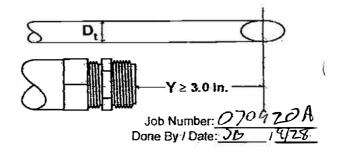
Degree indicating level position for determining α_{1} and α_{2}

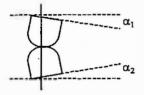


Degree indicating level position for determining θ .

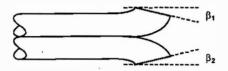


Degree indicating level position for determining γ then calculating Z.


Probe / Pitot Number	P1T-761
Level and Perpendicular	VGS / No
Obstructions	Yes / 🛍
Damaged	Yes / No
$\alpha_1 (-10^{\circ} < \alpha_1 < +10^{\bullet})$	-7.0
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	-10
β_1 (~5° < β_1 < +5°)	-20
β_2 (-5° < β_2 < +5°)	e e e
γ	j P
θ	40
A:	.993
z= A tan y (< 0.125")	.0170
w= A tan.0 (< 0.03125").	,065"
D _t (0.1875" < D _t < 0.375")	.,375
P_A (1.05D _t < P_A < 1.5D _t)	.479
P_B (1.05D _t < P_B < 1.5D _t)	.514
$P_A = P_8 \pm 0.0625$	Yes No

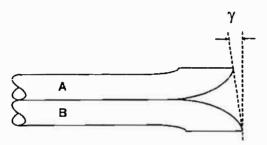

Assembly Inter-Component Spacing Requirements

Effective Length (in.)	69"
W (≥ 3.0")	<u> </u>
-or- AA (≥ 2.0°°)	7-1/1
X	
D_n .	<u> </u>
X / D _n (≥ 1.5))
Y (≥ 3.0")	7
Z ≥ 0.75"	_

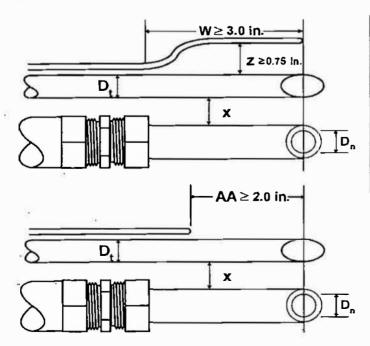


Alignment and Tubing Dimensions

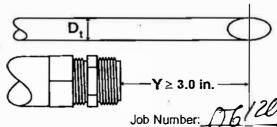
Degree indicating level position for determining α_1 and α_2 .



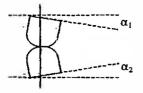
Degree indicating level position for determining θ .



Degree indicating level position for determining γ then calculating Z.


Probe / Pitot Number	PRP-GOS
Level and Perpendicular	res) No
Obstructions	Yes (No
Damaged	Yes No
α_1 (-10° < α_1 < +10°)	
α_2 (-10° < α_2 < +10°)	-1
β_1 (-5° < β_1 < +5°)	0
β_2 (-5° < β_2 < +5°)	-_
γ	-2'
θ	\triangleright
A	.884
z= A tan γ (< 0.125")	-,03
w= A tan θ (< 0.03125")	0
D_t (0.1875" < D_t < 0.375")	,>75
P_A (1.05D _t < P_A < 1.5D _t)	.442
P_B (1.05 D_t < P_B < 1.5 D_t)	्पपट
$P_A = P_B \pm 0.0625$	Yes / No

Assembly Inter-Component Spacing Requirements

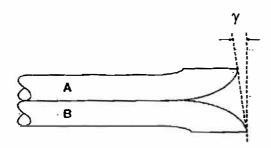


Effective Length (in.)	62.94
W (≥ 3.0")	6,9
-or- AA (≥ 2.0")	
x	1.0
D _n	.497
X / D _n (≥ 1.5)	2.01
Y (≥ 3.0'')	7.5
Z ≥ 0.75"	1,4

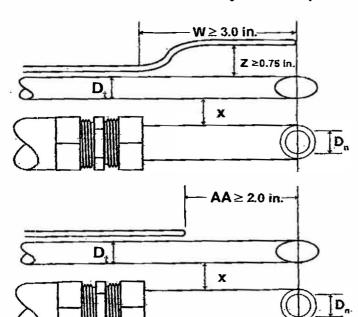
Done By / Date:

Alignment and Tubing Dimensions

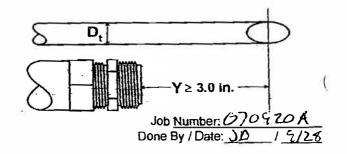
Degree indicating level position for determining α_1 and α_2 .



Degree indicating level position for determining θ .



Degree indicating level position for determining $\boldsymbol{\gamma}$ then calculating Z.


Probe / Pitot Number	PRB-608
Level and Perpendicular	Yes / No
Obstructions	Yes / MG
Damaged	Yes: / No
$\alpha_1 (-10^{\circ} < \alpha_1 < +10^{\circ})$	0.0
$\alpha_2 (-10^{\circ} < \alpha_2 < +10^{\circ})$	00
β_1 (-5° < β_1 < +5°)	0.0
$\beta_2 = (-5^\circ < \beta_2 < +5^\circ)$.O°
γ	L
θ	00
A	.888"
z= A tan y (< 0.125")	,015"
w= A tan θ (< 0.03125")	0"
D ₁ (0.1875" < D ₁ < 0.375")	.375"
P_A (1.05D _t < P_A < 1.5D _t)	.445
P_B (1.05D _t < P_B < 1.5D _t)	.443
$P_A = P_B \pm 0.0625$	(Yes) No

Assembly Inter-Component Spacing Requirements

Effective Length (in.)	61.5
W (≥ 3.0")	6.60
-or- AA (≥ 2.0'')	
x	1.10"
D _n	2481"
X / D _n (≥ 1.5)	2.29"
Y (≥ 3.0")	3.8"
Z ≥ 0.75"	1.23"

Method 4 Thermocouple System Audit

		Wethod 4 Inc	ermocoupie Sys	stem Audit			
	Probe I.D T-	PRB-602		Umbilical Adapte	I.D T-UMA	-015	
Run I	Meter Box I.D	T-MTB- GI	3	Filter Exit I.D		_	
	Umbilical I.D	T-UMC-6	07	Filter Box I.D			
Reference Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		
75	76		26		72	¥i	
robe Heat Check ilter Box Heat Check	Start Time:Start Time:		p Time:		Temperature: 250°F Temperature: 250°F		
	Probe I.D	T-PRB-6	63	Umbilical Adapte	r I.D T-Umt	-020	
Run 2	Meter Box I.D	T-MTB-01	3	Filter Exit I.D	<u> </u>		
	Umbilical I.D	T-DHC-	607	Filter Box I.D			
Reference Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		
78	72	_	78	_	78		
Run 3	Probe I.D Meter Box I.D	T-PRB-6		Umbilical Adapte	r I.D T - UM	A-012	
Kun 3	Meter Box I.D Umbilical I.D	T-UMC					
Reference	Omonicai i.b	1 0115		Filter Box I.D			
Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		
77	72		78		78		
robe Heat Check ilter Box Heat Check	Start Time:		p Time:	_	Temperature: 250°F Temperature: 250°F		
Thermocouple	Primary M	1eter Box	Meter Box I.D	T-MTB-	013		
Simulator Setting	5 Sta	ıck	Filte	er Exit	Impinger Exit		
50	50				50		
00	100				100		
200	201						
300	302						
400	400	<u> </u>	Tolerance I	Range			
600	601		Stack ± 8.0 ° F o	or ± 1.5% absolute			
800	803		Filter ± 5.4 ° F				
1000	100	3	Meter ± 5.4 ° F				
	1 / 2		1				

Exit $\pm 2.0^{\circ}$ F

Mercury Reference Thermometer Range: 30 to 214 $^{\rm 0}$ F

1500

Thermocouple Simulator: Model CL23A, Type K, Range -328 to 2502 $^{\rm 0}$ F,

Serial # T-229854 Serial # T-200458

Method 4 Thermocouple System Audit

		wethou 4 int	ermocouple Sys	stem Augit			
	Probe I.D	-PRB-804	801	Umbilical Adapte	r I.D T-UM	A-0021	1012/
Run I	Meter Box I.D	T-MTB-01	′/	Filter Exit I.D			
	Umbilical I.D	T-UMC-		Filter Box I.D	I- FLB	-004	
Reference Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		
72	71	71	71	-	7/-	121	Æ
	Start Time: 3:00 Start Time: 3:00		Time: 3:07	-	Temperature: 250°F Temperature: 250°F		
	Probe I.D 7 ~	PRB-801	55	Umbilical Adapte	r I.D		
Run 2	Meter Box I.D			Filter Exit I.D			
	Umbilical I.D	I = UATE	603 55	Filter Box I.D			
Reference Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		
	Start Time:Start Time:		p Time: o Time:	_	Temperature: 250°F Temperature: 250°F		
	Probe I.D 7	PIT- 4	102	Umbilical Adapte	r I.D		
Run 3	Meter Box I.D	55. 57	013	Filter Exit I.D	195	_	
	Umbilical I.D	T- Mau.	- 351	Filter Box I.D			
Reference Thermometer °F	Stack	Meter In	Meter Out	Filter Exit	Impinger Exit		(
73	71						
	Start Time:	_	p Time:	-	Temperature: 250°F Temperature: 250°F		
Thermocouple	Primary N	leter Box	Meter Box I.D	T-MTB-0	11 /7-17	& ES	
Simulator Setting	Sta	ack	Filte	er Exit	Impinger Exit		
50) 5	0/ 48		1	50	9	
100	10	0/98			100	7	
200	20						
300	36	2/300					
400	400	7 / 399	Tolerance I	Range	-		
600	600) (599	Stack ± 8.0 °F c	or ± 1.5% absolute			
800	802	2/801	Filter ± 5.4 ° F				
1000	100	2/1002	Meter $\pm 5.4^{\circ}$ F				
1500	150	1501	Exit $\pm 2.0^{\circ}$ F		:		

Mercury Reference Thermometer Range: 30 to 214 $^{\rm 0}\,{\rm F}$

Thermocouple Simulator: Model CL23A, Type K, Range -328 to 2502 ⁰ F,

Serial # T-229854 Serial # T-200458

Method 2 Post-Test Thermocouple Check

ALT-011 Post-Test Stack Thermocouple System Check Procedure

Reference Thermometer Range	-328 → 2502°F
Reference Thermometer I.D.	T-THC-008
Umbilical Cord I.D.	T-UMC-607
Temperature Display I.D.	T-MTB-013
Continuity Check Performed By:	

Run 1	Run 2	Run 3	Run 4
T-PRB-602	T-PRB-603	T-PRB-602	
71	71	71	
71	71	71	
0	Ö	0	_
	T-PRB-602 71 71	T-PRB-602 T-PRB-603 71 71 71 71	T-PRB-602 T-PRB-602 71 71 71 71 71

Air Compliance Testing, Inc.
(Method 2.xls-Post-Test Thermocouple Check) 9/17/2007

Method 2 Post-Test Thermocouple Check

ALT-011 Post-Test Stack Thermocouple System Check Procedure

Reference Thermometer Range

Reference Thermometer I.D.

Umbilical Cord I.D.

T-THC-∞8

T-UHC-602

Temperature Display I.D.

Continuity Check Performed By:

	Run 1	Run 2	Run 3	Run 4
Probe I.D.	t-PRB-606	T-PRB - 610	T-PRB-608	
Reference Thermometer Ambient Readout (°F)	720	72 ⁶	7Z°	-
Stack Temperature Thermocouple Ambient Readout (°F)	710	710	7(0	-
Temperature Difference (must be ±2°F)	-10	-10	-10	

Meter Box Pre-Test Leak Check

✓ _ Remove the front panel from the meter box
Disconnect the fan
Hook up the proper pump to the meter box
Ciose both the fine and coarse adjustment valves
Connect the DH hoses on the front of the meter box
Remove the copper elbow from stainless tube at the exit side of gas meter
Stopper the stainless tube with a rubber stopper
Disconnect the DH static line from the orifice (bottom)
Plug in leak check tube into the static side of the orifice
Blowing into the leak check tube, pressurize the system to 5-7 inches and clamp off
Hold for one minute
No leakage should occur. If leak is present, it must be corrected
Affix (w/ electrical tape) the copper elbow onto the stainless tube at the exit side of gas meter
Reassemble meter box
Plug in capped swagelok stem at sample inlet
Start pump, bringing system vacuum to at least 15 in. Hg
Note DGM reading, start timer 656, 915
Observe DGM for one minute
No leakage should occur. If leak is present, it must be corrected
Check oil wick position (should be 1/4" above the black O-ring)
Check pump oil level (should be at fill line)
Meter Box Number _MTB-0//

Method 4 Pre-Test Dry Gas Meter (006)/Orifice Calibration Data

Meter Box I.D:	T.	MTB-	011				Sta	andard N	<u>/leter_</u>		
Meter Box Serial Number	er:				Calibrated I	Ву:	Apex	Instrume	ents Inc.		
Standard Meter I.D:	Ţ.	- DGM	- 006	3	Calibration	Dat	e: May	1, 2007			
Temp Sensor I.D:	T.	-DGM	MTB-	-011	Gamma: 1.	004	7				
Barometer I.D:		BAR-			Serial Num	ber:	15123	377			
Leak Check: (+)	(-) /			± 5							
Meter Box Level?	/				REMO	VE (CAPS	FROM S	TANDA	RD MET	ER
Run 1											
Pressures			N	leter Readi	ngs	S :		Те	mperati	ıres	
ΔH: 1	in.H₂0		Time	Std Meter	Meter Box		Time	Std N	/leter	Meter	Box
Meter Box Vac: 5	_in.Hg	Begin	0	987.14Z	65.239		(min)	ln	Out	In	Out
P Bar: 29,35	_in.Hg	End	12	993,45	671.917		4	35	85	93	B5
		Net	12	6.823	6.678		8	85	85	44	86
}			(>5.0	dcf)			12	86	86	96	28
							Avg.	85	33	90.	22
Run 2											
Pressures			N	leter Read				Те	mperati	ıres	
ΔH: <u>Z</u>	_in.H ₂ 0		Time	Std Meter	Meter Box		Time	Std M	Veter	Mete	r Box
Meter Box Vac: 5	in.Hg	Begin	0	995.074	673,024		(min)	In	Out	In	Out
P Bar: 29, 35	in.Hg	End	12	004.552	682.516		4	85	85	96	87
		Net	12	9.478	9,492		8	85	85	タフ	ජප
4			(>5.0	dcf)			12	86	86	96	<i>5</i> 8
							Avg.	85	2 33	92,	00
Run 3											
Pressures			N	leter Read		2 /1 1		Te	mperat	ures.	
ΔH: 3	_in.H ₂ 0		Time	Std Meter	Meter Box		Time	Std I	Meter	Mete	r Box
Meter Box Vac: 5	_in.Hg	Begin	0		682.068		(min)	In	Out	In	Out
P Bar: 29,35	_in.Ĥg	End	12	016.757	694.837		4	36	85	97	89
		Net	12	11,657	11.769		8	86	86	100	89 90
			(>5.0	dcf)			12	86	86	99	
							Avg.	85,	85	94.0	20
Δ H :		_∆H _@	ē		Υ						
	_	1. 28			1.0333	3	<u>.</u>				
		1.84	<u>B</u>		1.010	1					357
3	_	1,82	<u> </u>	2	1,0025	5					
AVG.	-	1,82	2		1,015	1	-				

Done By / Date: CG / 8 Checked By / Date: _____/__ Air Compliance Testing, Inc. Final Check By / Date: _

Job Number: <u>070803</u>

(070803.xls-Pre-Test Dry Gas Meter (006)) 8/3/2007

Method 4 Pre-Test Meter Console (006) Calibration

Run	Calibration Meter Correction	Barometric Press. (Pb)	Delta H	Meter Box Volume (Vd)	Average Meter Box Temperature	Standard Meter Volume (Vc)	Standard Meter Temperature	Time		Tolerance (plus or minus	Delta	Tolerance (plus or
No.	Factor (Yc)	(in.Hg)	(in w.g.)	(cu.ft.)	(Tm) (F)	(cu.ft.)	(Tc) (F)	(min.)	Gamma (Y)		H@	minus 0.2)
1	1.0047	29.35	1.000	6.678	90.33	6.823	85.33	12	1.0333	0.017921	1.788	-0.033
2	1.0047	29.35	2.000	9.492	92.00	9.478	85.33	12	1.0104	-0.004997	1.848	0.026
3	1.0047	29.35	3.000	11.769	94.00	11.657	85.83	12	1.0025	-0.012924	1.829	0.007
				•						PASS		PASS
							Average		1.0154	PASS	1.822	

 Pump
 Meter Box
 Meter Meter

 Number
 T-PMP- 013
 Number
 T-MTB- 013
 Number
 T-DGM- 006

Add Values to 30 Day Calibration History Add Values to Dry Gas Meter Calibration History Tag Meter Box

Meter Box Pre-Test Leak Check

./	Remove the front panel from the meter box
	Disconnect the fan
$-\frac{0}{7}$	Hook up the proper pump to the meter box
	_Close both the fine and coarse adjustment valves
	Connect the DH hoses on the front of the meter box
	_Remove the copper elbow from stainless tube at the exit side of gas meter
	_Stopper the stainless tube with a rubber stopper
	_Disconnect the DH static line from the orifice (bottom)
	Plug in leak check tube into the static side of the orifice
	_Blowing into the leak check tube, pressurize the system to 5-7 inches and clamp off
	_Hold for one minute
	_No leakage should occur. If leak is present, it must be corrected
	_Affix (w/ electrical tape) the copper elbow onto the stainless tube at the exit side of gas meter
	_Reassemble meter box
	_Plug in capped swagelok stem at sample inlet
	_Start pump, bringing system vacuum to at least 15 in. Hg
J	_Note DGM reading, start timer
	Observe DGM for one minute
	_No leakage should occur. If leak is present, it must be corrected
	_Check oil wick position (should be 1/4" above the black O-ring)
	_Check pump oil level (should be at fill line)
Meter Bo	ox Number 1-MTB-013

Method 4 Pre-Test Dry Gas Meter (006)/Orifice Calibration Data

			<u>م</u> اء	7								
Meter Box I.D:		- MTB -		,		St	andard N	<u>Meter_</u>				
Meter Box Serial Number	er:	040	RXX		Calibrated By: Apex Instruments Inc.							
Standard Meter I.D:		- DGM			Calibration Date: May 1, 2007							
Temp Sensor I.D:	T	- DGM	ω	0	Gamma: 1.0	047						
Barometer I.D:	T	- BAR	-00		Serial Numb	er: 1512	377					
Leak Check: (+)	(-)	Pass	V:	2) S								
Meter Box Level?		res	-		REMOV	E CAPS	FROMS	TANDA	RD MET	ER		
Run 1	-											
Pressures			N	leter Readi	ngs		Te	mperati	ures			
ΔH: [. O	in.H₂0		Time	Std Meter	Meter Box	Time	Std N	Meter	Mete	r Box		
Meter Box Vac: 5.0	in.Hg	Begin	0	827.113	527. 480	(min)	in	Out	1n	Out		
P Bar: 29,34	in.Hg	End	12	893.768	534. A3	4	81	8(83		
	_	Net	12	6.655	6.713	8	31	81	_	83		
			(>5.0			12	81	82	_	84		
			`			Avg.		17	Ö.	3. 33		
Run 2												
Pressures	:- 11 0		_	leter Readi	ngs Meter Box			mperat				
ΔH: 2.0	_ in.H₂0 		Time			Time		Meter	-	r Box		
Meter Box Vac: 5-0	_in.Hg	Begin	0		539.20c	(min)	ln on	Out	In	Out		
P Bar: 29.34	_in.Hg	End			549.294	4	82	82		87		
		*Net		9,926	10.094	8	82	82		88		
			(>5.0	dcf)		12	-82	82		89		
						Avg.	87	2.00	<u> </u>	88.00		
Run 3							_	_				
Pressures ΔH: 3.0	: 11.0			leter Readi	ngs Meter Box	(-		mperat				
5.0	in.H₂0	<u> </u>	Time			Time		Meter		r Box		
	_in.Hg	Begin			553.TA	(min)			In	Out		
P Bar: 29.34	_in.Hg	End	12		565 947	4	92	87		® 3 €		
		Net	12	11.942	12.168	8	\$2	82		92		
			(>5.0	dcf)		12	83	83		'92		
						Avg.	87	2.33	(6)	91.67		
ΔН:		ΔH@		OF:	_ γ							
1,0					60.995	9975						
1.0		1.87		14	9929	,,,,,						
0.1	_	1.821		9).	.9939 .9955 .9957	_						
				•n	7955)						
AVG.	_	1-80	ν_{-}		. 1957							

Job Number: <u>676863</u>

Method 4 Pre-Test Meter Console (006) Calibration

Run No.	Calibration Meter Correction Factor (Yc)	Barometric Press. (Pb) (in.Hg)	Delta H (in w.g.)	Meter Box Volume (Vd) (cu.ft.)	Average Meter Box Temperature (Tm) (F)	Standard Meter Volume (Vc) (cu.ft)	Standard Meter Temperature (Tc) (F)	Time (min.)	Gamma (Y)	Tolerance (plus or minus 0.02)	Delta H@	Tolerance (plus or minus 0.2)
1	1,0047	29.34	1.000	6.713	83.33	6.655	81.17	12	0.9975	0.001852	1.876	0.068
2	1.0047	29.34	2.000	10.094	88.00	9.926	82.00	12.5	0.9939	-0.001722	1.820	0.012
3	1.0047	29.34	3.000	12.168	91.67	11.942	82.33	12	0.9955	-0.000131	1.729	-0.079
										PASS		PASS
		5.00					Average		0.9957	PASS	1.808	deri n-,

 Pump
 Meter Box
 Meter

 Number
 T-PMP- 013
 Number
 T-MTB- 013
 Number
 T-DGM- 006

Add Values to 30 Day Calibration History Add Values to Dry Gas Meter Calibration History Tag Meter Box

Job Number: 07080)

Done By / Date: 76 / 8/3/07

Checked By / Date: 1 - 1 - 1 - 1

Method 4 Post-Test Dry Gas Meter (006)/Orifice Calibration Data

Meter Box I.D:	-MTB-013			<u>s</u>	tandard N	<u>leter</u>		
Meter Box Serial Number:	0408004		Calibrated E	Ву: Арех	Instrume	nts Inc.		
Standard Meter I.D: T	- DGM - 006	5 a	Calibration	A				
Temp Sensor I.D: T	- DGM - 006	5	Gamma: 1.0	0047				
	- BAR - 00	8	Serial Num	ber: 1512	377			
Leak Check: (+)	NA	9 9						
Meter Box Level?	Yes	e D	REMO	VE CAPS	FROM S	TANDA	RD MET	ER
				· · · · ·				
Run 1		leten Deed	: -		Ta			
Pressures ΔH : 1. 52 in. H_2O	Time	leter Read	Ings Meter Box	STIME .	re Stank	mperatu		
	The state of the s	96,963	989.199	25.27.3765 : 455				4-2-1-2-1-
	Begin 0 End 12	105. [3]	997.46		71	7/	 EXE (1) 227	23
P Bar: 29.91 in.Hg	Net 12	8.168		8	71	72	-	74
	(>5.0		8.264	12	-, (72	_	75
	(>5.0	ucij		Avg.	71	33	7	4.00
Run 2				IAVy.	1 /1	2		7.00
Pressures	M	leter Read	inas		Te	mperatu	ıres	
ΔH: 1.52 in.H ₂ 0			Meter Box	Time	Stdiv			n Box
Meter Box Vac; 3.5 in.Hg	Begin 0	105.131	997.46	17.57.5.10.3				
P Bar: 29.41 in.Hg			1005.733	4	71	73	~	76
	Net 12	B+77	8.270	8	71	72		77
	(>5.0	dcf) ^{8,152}		12	70	73	•	77
				Avg.	71.	83	76	5-67
Run 3								
Pressures		leter Read				mperatu		
ΔH: (.5Z in.H ₂ 0	Time	Std Meter			Sid N			
Meter Box Vac: 3.5 in.Hg	Begin 0	113.283	5.733	(min)	E in E			
P Bar: 29.4 in.Hg	End 12.5		14. 323	4	71	73		78
	Net *12.5		8.596	8	71	73		79
	(>5.0	dcf)		12	71	74		80
				Avg.	72	2.17	79,0)O
ΔΗ;	٨Ц		N /					
L.52	ΔH@ 1.852		.9942					
1.52		354	<u>1792</u>	9956				

Job Number: <u>070926 B</u> Done By / Date: <u>36</u> / <u>9.29.6</u>

Air Compliance Testing, Inc. (Post-Cal.xls-Post-Test Dry Gas Meter (006)) 6/15/2007

1.52 AVG.

Method 4 Post-Test Meter Console (006) Calibration

Run No.	Calibration Meter Correction Factor (Yc)	Barometric Press. (Pb) (in.Hg)	Delta H	Meter Box Volume (Vd) (cu.ft.)	Average Meter Box Temperature (Tm) (F)	Standard Meter Volume (Vc) (cu.ft.)	Standard Meter Temperature (Tc) (F)	Time	Gamma (Y)	Tolerance (plus or minus 0.02)	Delta H@	Tolerance (plus or minus 0.2)
1	1.0047	29.41	1.520	8.264	74.00	8.168	71.33	12	0.9942	-0.001407	1.852	-0.005
2	1.0047	29.41	1.520	8.270	76.67	8.152	71.83	12	0.9956	-0.000060	1.854	-0.004
3	1.0047	29.41	1.520	8.590	79.00	8.449	72.17	12.5	0.9971	0.001467	1.867	0.009
										PASS		PASS
							Average		0.9956	PASS	1.857	

Pump Meter Box Meter
Number T-PMP- 013 Number T-MTB- 013 Number T-DGM- 006

Add Values to 30 Day Calibration History

Add Values to Dry Gas Meter Calibration History

Tag Meter Box

Air C pliance Testing, Inc.

Method 4 DGM Calibration History

Г		Standard	Meter	Delta	Delta	Delta	Delta	Delta	Delta		Average	
Туре	Date	Meter	Box #	Н	H@	Н	H@	Н	H@	Gamma	Delta	Ву
		Serial #									H@	
Pxt	9/10/07	15/2377	006	1.49	1.685	1,49	1.681	1.49	1.687	.9920	1.684	Ko
Bit	9/10/02	15[7]377	013	1.72	1.9/2	1.7.2	1.929	1.72	1.911	.9993	1917	KO-
Post	9.14,07	1512377	002	1.11	1.882	<i>t.l</i> (1.882	1.11	1.872	1.0185	1.879	76
Pre	9/20/07	15/2377	00 3	1.0	1.704	2.0	1.755	3.0	1.688	1.0056	1.716	166
Pre	924/07	1512377	015	1.0	2.103	2.0	2.202	3,0	2.127	,9960	2,144	KC
Pre	9/20107	1572377	0,02	1.0	1.858	2.0	1.805	3,0	1.759	1.0055	1.807	KG
Pre	9/20/07	1512377	00.9	10	1.726	2.0	1.742	3.0	1.710	.9967	1.726	KB
Fre	9/20107	15/2377	006	1.0	1.881	2.0	2.007	3.0	2.027	.9956	7.972	KG.
Post	9.23.07	1512377	013	1.52	1.852	1.52	1.854	1,52	1.867	.9956	1.857	X.
PRE	9.28.07	1512377	012	1.0	1.782	2.0	1.810	3.0	1.800	1.6066		JB
	10,1.07	1512377	016	1-0	דקליו	2-0	1.7.59	3,6	1.637	1.6051	1.725	JB
Pix	10/3/07	512377	014	1.0	1.705	(۱،۲	1.793	3.0	1.766	:9925	1.755	Ka
1-7	10/4/07	1512377	013	1,0	1.962	2.0	2.007	1	1.938	_9994	1.9%	W
tre	10/4/17	1512377	010	1.0	1.720	2.0	1.733	3.0	1.684	,99/3	1.7/3	KC
Post	10/19/07		008	.95	1.652	.95	1.659	:95	1.6.33	.9992	1.648	Fee
Pre	(0/22/01	15/237)	011	1.0	1.812	2.0	1959	3.0	1 838	1,0028	1.83>	25
i i	j.							<u> </u>				
												<u> </u>
											1	<u>i</u>
												_
									\$			

Method 4 DGM Calibration History

		Standard	Meter	Delta	Delta	Delta	Delta	Delta	Delta		Average	7
Туре	Date	Meter	Box#	Н	H@	Н	H@	Н	H@	Gamma	Delta	E,
		Serial #									H@	
PRE	6/5/07	50172	00 Z	,	1.699	Z	1,793	3	1.759	1.0055	1.750	CG
PRE	6/6/07	50172	014	/	1,690	2	1.841	3	1,752	0.9835	1.761	<u>CG</u>
PRE	4401	50172	013	j	1.875	ے	6751	3	1.690	1.0058		CG
IZE	6/6/07	50172	016		2,012	2	1.995	_3_	1.789	1-01ZZ	1.932	CG
PRE	6/6/07	50172	003)	1.692	2	1.659	3	1,752	1.0151	1.701	06
RE	47/07	50172	015	1_	2,631	2	1.854	3	1.735	0.9981	1.873	12
PRE_	6.15.07	1512377	008	_1_	1.590	_Z_	1.610	_3_	1.570	0.9998	1.590	<u>X</u>
Post	6.15.07	1512377	006	1.08	1.788	1.08	1.789	1.08	1.785	0.9940	1.787	JG
Post	6.15.07	1512377	015	0.63	2.160	0.63	2.688	0.63	2.091	1.0043	2.093	4
Pzit	7/2/07	154377	002	1.24	1.938	1.24	1.957	1.24	1.938	1.0159	1.944	Ko
Post	7/107	151377	003	1.18	1.752	1.18	1.744	1.18	1.777	1.0082	1.758	KC
Post	6/6/01	1512377	009	1-727	1.727	2	1.651	2	1.576	1.0170	1.651	CE
Post	6/6/07	1512377	004	1.8	1.683	1.8	1.443	1.8	1.668	1.0192	1.614	Ca
Pst	7/9/01	1512377		1.37	1.855	1.37	1.867	1.37	1.86/	1.0/85	1.861	7235
lice	7/9/07	21512377	012		1.786	2_	1.862	3	1,835	1.0084	1.828	7
RE	8.3.07	1512377	010	1.0	1.70%	2.0	1.698	3.0	1.663	0.9918	1.690	16
PRE	8.3.07	1512377	013	1.0	1.876	2.0	1.820	3.0	1.729	0.9957	1.808	76
PRE	8.3.07	1512377	014	[.0	1.715	2.0	1.822	3.0	1.770	0.9939	1.769	K
PRE	8-307	1512377	015	1,0	1.866	20	1.791	3,0	1.659	1,0070	10772	ट्य
PRE	8-3-07	1512517	009	1.0	1.668	2.0	1.682	3,0	1.699	1.0016	1,683	06
PRE	2-3-67	1512317	011	1.0	1.788	Zo	1.848	3,0	1.829	1.0154	1.82	CG
PRE	8-307	1512377	002	1,0	1.849	20	1.807	3,0	1.777	0.8979	1.811	06
Post	83.07	1512377	012	.94	1.805	,94	1.817	.94	1.821	1.0108	1.814	L
Pre	7/11/07	1512377	004	1	1.882	2.0	2.076	3.0	2.088	1.0193	2.015	CG
Post	8/24/07	154377	015	1.2	1.982	7. 2	1.987	1.2	1.990	9966	1.987	KG
Post	8/24/50	15/2377	015	1.6	1.838	1.6	1.848	1-6	1.843	9974	1.843	Ko-
Pie	8/27/07	1512377	006	1	1.725	2	1.710	3.	1.649	09919	1.695	TG
Pre	8/27/07	1572377	008	_ !	1.690	2	1.668	3	1.622	1.009-1	1.644	ES
1: 1		1512377	016	1	1.529	2	1.623	3	1.528	1.004-9	1-577	ES
fre	9/1/07	105085	004	1	2.059	2	2.063	3	2,134	, 990Z	2,085	06
fle	9/10	303015	017	1	1,713	ے	1,736	3	1.707	1.0090	1.715	7

Digital Pressure Gauge Calibration History

7.000 COOT - 716 739 + 1 801 Le 6.47 1 NO - 720 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Digital	(mm Hg)	(mmHg)	(mmHg)	(≤2mm Hg)				(°F)
TOPE-005 748 749 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Difference	pass/fail	By whom		Adjusted?	Temp.
TOPE-005 748 749 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOPO	7003			+1			6-4-7	10	78
T-DPG-006 748 748 0 Pass 6 6.15.07 No T-DPG-006 748 748 0 Pass JG 6.15.07 No T-DPG-006 748 748 0 Pass JG 6.15.07 No T-DPG-006 748 748 0 Pass JG 6.15.07 No T-DPG-008 655 748 748 149 1 MM ML 6.21.07 ND SET TORS. T-DPG-008 748 749 1 MM ML 6.21.07 ND SET T-DPG-003 745 745 744 1 Pass TBS 71/15/107 NO T-DPG-003 745 745 744 1 Pass TBS 71/15/107 NO T-DPG-004 745 745 745 0 Pass TBS 71/15/107 NO T-DPG-004 745 745 745 0 Pass TBS 71/15/107 NO T-DPG-004 745 745 0 Pass TBS 71/15/107 NO T-DPG-004 745 745 745 0 Pass TBS 71/15/107 NO T-DPG-008 745 745 745 0 Pass TBS 71/15/107 NO T-DPG-008 745 745 745 0 Pass TBS 71/15/107 NO T-DPG-008 746 1 Pass TBS 71/15/107 NO T-DPG-008 746 1 Pass TBS 71/15/107 NO T-DPG-008 747 747 0 Pass TBS 71/15/107 NO T-DPG-003 744 741 0 Pass TBS 71/26/10 NO T-DPG-003 744 741 0 Pass TBS 71/26/10 NO T-DPG-003 744 741 0 Pass TBS 71/26/10 NO T-DPG-003 744 741 1 Pass TBS 71/26/10 NO T-DPG-003 744 742 1 Pass JG 8.807 No E-DPG-003 744 742 1 Pass JG 8.807 No E-DPG-003 742 742 1 Pass JG 9.807 No E-DPG-003 742 742 1 Pass JG 9.807 No E-DPG-003 742 742 1 Pass JG 9.807 No E-DPG-003 744 744 1 Pass JG 9.807 No E-DPG-003 746 747 1 Pass JG 9.807 No E-DPG-003 746 747 1 Pass JG 9.807 No E-DPG-003 746 746 0 Pass JG 9.807 No E-DPG-003 746 746 0 Pass JG 9.807 No E-DPG-003 746 746 0 Pass JG 9.807 No E-DPG-003 748 746 747 1		14010-00 (81					75-
TOPE-006 748 748 748 0 Pass 16 6.15.07 No TOPE-008 748 748 0 Pass 16 6.15.07 No TOPE-008 748 749 149 1 Pass 16 6.15.07 No TOPE-008 745 745 745 0 Pass 16 6.15.07 No TOPE-003 745 745 745 0 Pass 185 7/15/107 No TOPE-003 745 745 0 Pass 185 7/15/107 No TOPE-006 745 745 745 0 Pass 185 7/15/107 No TOPE-006 745 745 745 0 Pass 185 7/15/107 No TOPE-006 745 745 745 0 Pass 185 7/15/107 No TOPE-006 745 745 745 0 Pass 185 7/15/107 No TOPE-006 745 745 144 1 Pass 185 7/15/107 No TOPE-008 745 745 144 1 Pass 185 7/15/107 No TOPE-008 745 745 144 1 Pass 185 7/15/107 No TOPE-008 745 745 147 1 Pass 185 7/15/107 No TOPE-008 745 745 147 1 Pass 185 7/15/107 No TOPE-008 745 745 147 147 147 147 147 147 147 147 147 147								6.15.27		74
T-080-008 748 748 0 Pass JC 6,1507 No ST-080-008 748 749 1 Pass JC 6,1507 No ST-085-008 748 749 1 Pass JC 6,1507 No ST-085-008 748 749 1 Pass JC 6,1507 No T-086-008 745 745 0 Pass TBS 71/15/07 No T-086-008 745 746 1 Pass TBS 71/15/07 No T-086-008 747 747 0 Pass TBS 71/15/07 No T-086-008 747 747 0 Pass TBS 71/15/07 No T-086-008 749 747 0 Pass TBS 71/15/07 No T-086-008 749 747 0 Pass TBS 71/15/07 No T-086-008 749 747 1 Pass TBS 71/15/07 No T-086-008 749 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 749 742 742 1 Pass JC 8807 No E-086-008 745 745 747 1 Pass JC 8807 No E-086-008 745 745 747 1 Pass JC 8807 No E-086-008 745 745 747 1 Pass JC 8807 No E-086-008 746 747 1 Pass JC 8807 No E-086-008 746 747 1 Pass JC 8807 No E-086-008 746 746 0 Pass JC 9,1207 No E-086-008 746 747 1 Pass JC 9,1207 No E-086-008 746 747 1 Pass J						Pass			N _o	74
TOBOOS						Pass	$\overline{}$	6.15.07	No	74
TOPE-003 THE THE STATE THE STATE STATE STATES TOPE-003 TOPE-003 THE THE STATES THE STATES TOPE-003 TOPE-003 THE THE STATES THE STATES TOPE-003 TOPE-003 TOPE-003 THE THE STATES OF SESS THE TOPE-003 TOPE-003 TOPE-003 THE THE STATES OF SESS THE TOPE-003 TOPE-003 TOPE-003 THE THE STATES OF SESS THE TOPE-003 TOPE-003 THE THE STATES OF SESS THE TOPE-003 TOPE-003 THE THE STATES OF SESS THE TOPE-003 THE THE SESS THE TOPE-003 THE THE SESS THE TOPE-003 THE THE SESS THE STATES OF SESS THE STATES OF SESS THE SESS						Pass				74_
T-PPG-003 THS T-PPG-005 THS T-PPG-005 THS T-PPG-005 THS T-PPG-005 THS T-PPG-005 THS							$\overline{}$			80"
T-PPE-006 T-976-006 T-976-008 T-971 T-976-009 T-973 T-976-009							_		_	80°
T-076-066 745 745 744 1 Pess 713/67 No 77 T-076-678 745 744 1 Pess 713/67 No 77 T-076-678 745 744 1 Pess 713/67 No 77 T-076-678 745 745 744 1 Pess 713/67 No 77 T-076-678 745 745 745 1 Day 1 Hy 7-20-6 19 74 747 747 1 Day 1 Hy 7-20-6 19 74 747 747 0 PAS 1 Hy 7-20-6 19 74 747 747 0 PAS 1 Hy 7-20-6 19 74 747 747 1 PAS 1 T-076-670 747 747 747 1 PAS 1 T-076-670 741 741 0 PAS 1 T-076-670 741 741 1 PAS 1 T-076-670 741 742 1 PAS 1 T-076-670 741 741 741 741 741 741 741 741 741 741					1		783			76'
T-DR6-608 745 745 744 1 Pass 785 7113/00 No 77 T-DR6-608 745 745 0 Pass 185 7113/00 No 77 T-DR6-608 745 745 0 Pass 185 7113/00 No 77 T-DR6-608 747 747 0 PAS										76
T-DP6-008 745 745 0 Pess 126 7113107 No 77 T-DP6-08 747 746 1 DR0 12 7200 16 71 S-DP6-07 747 747 0 PAS 1 DR0 12 7200 16 71 S-DP6-07 747 747 0 PAS 1 DR0 12 7200 16 71 S-DP6-07 747 747 0 PAS 1 DR0 12 7200 16 71 S-DP6-07 747 747 1 PRS TBS 712667 NO 8 S-DP6-03 741 741 0 RSS 16 8.807 No 8 I-DP6-03 741 741 1 PRS 185 16 8.807 No 8 I-DP6-03 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 742 1 PRS 16 8.807 No 8 I-DP6-08 741 748 1 PRS 16 8.807 No 8 I-DP6-09 748 747 -1 PRS 16 8.807 No 8 I-DP6-09 748 747 -1 PRS 16 8.807 No 17 I-DP6-09 748 747 -1 PRS 16 8.807 No 17 I-DP6-09 752 751 -1 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.17.07 No 17 I-DP6-08 752 752 0 PRS 16 9.18.07 No 17 I-DP6-08 746 746 0 PRS 16 9.18.07 No 17 I-DP6-08 746 746 0 PRS 16 9.18.07 No 17 I-DP6-08 746 746 0 PRS 16 9.18.07 No 17 I-DP6-08 746 746 0 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 No 17 I-DP6-08 746 747 1 PRS 16 9.18.07 NO 17										76
T-DEG-0.8 747 745 1 Day 14 7-20 10 71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							785			76'
\$\int_{1}^{1} \text{Pre-con} \tag{747} \tag{747} \tag{747} \tag{9} \tag{144} \tag{147} \tag{7447} \tag{147} 147					G					76
T-086-0px 747 747 0 PASI AN 7-20-07 AD 76 T-086-0px 746 1 PASI AN 7-20-07 AD 74 T-086-0px 746 1 PASI AN 7-20-07 AD 74 T-086-0px 748 747 1 PASS TBS 7/26/07 NO 8 S 7-10-086-0px 741 741 0 Rass 16 8.807 No 8 S 7-10-086-0px 741 742 1 PASS 16 8.807 No 8 T-086-0px 741 742 1 PASS 16 8.807 No 8 T-086-0px 741 742 1 PASS 16 8.807 No 8 T-086-0px 741 742 1 PASS 16 8.807 No 8 T-086-0px 742 742 1 PASS 16 8.807 No 8 T-086-0px 742 742 1 PASS 16 8.807 No 8 T-086-0px 742 743 1 PASS 16 8.807 No 8 T-086-0px 742 743 1 PASS 16 8.807 No 8 T-086-0px 742 743 1 PASS 16 8.807 No 8 T-086-0px 748 747 1 PASS 16 8.307 No 7 T-086-0px 748 748 749 2 PASS 16 8.307 No 7 T-086-0px 748 748 748 2 PASS 16 8.307 No 7 T-086-0px 748 748 748 2 PASS 16 8.307 No 7 T-086-0px 752 750 -2 PASS 16 8.307 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 Vo 8 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 752 752 0 PASS 16 9.17.07 No 7 T-086-0px 746 746 0 PASS 16 9.18.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 747 1 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 747 1 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 746 0 PASS 16 9.28.07 No 7 T-086-0px 746 747 1 PASS 16 9.28.07 No 7 T-086-0					7					76
T-086-cm 746 1 PAT IN 7-200 10 74 T-bPG-003 748 747 1 PASS TBS 7/26/00 NO 7 T-DPG-003 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 741 742 1 PASS JG 8.807 NG 8 T-DPG-005 742 743 1 PASS JG 8.2407 NO 8 T-DPG-003 742 743 1 PASS JG 8.2407 NO 8 T-DPG-003 742 747 1 PASS JG 8.2407 NO 8 T-DPG-004 748 747 -1 PASS JG 8.307 NG 7 T-DPG-007 748 747 -1 PASS JG 8.307 NG 7 T-DPG-007 748 747 -1 PASS JG 8.307 NG 7 T-DPG-003 752 750 -2 PASS JG 8.307 NG 7 T-DPG-005 752 752 O PASS JG 9.707 NG 7 T-DPG-005 752 752 O PASS JG 9.707 NG 7 T-DPG-006 752 752 O PASS JG 9.707 NG 7 T-DPG-006 752 752 O PASS JG 9.707 NG 7 T-DPG-006 752 752 O PASS JG 9.707 NG 7 T-DPG-007 746 746 O PASS JG 9.707 NG 7 T-DPG-003 746 746 O PASS JG 9.807 NG 7 T-DPG-005 746 746 O PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-005 746 746 O PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-005 746 747 1 PASS JG 9.807 NG 7 T-DPG-006 746 747 1 PASS JG 9.807 NG 7 T-DPG-007 746 0 PASS JG 9.807 NG 7					8					76
T-DPG-003 74! 74! 0 Rass TBS 712600 No 7 T-DPG-003 74! 74! 0 Rass JG 8.8.07 No 8 T-DPG-005 74! 742 I Pass JG 8.8.07 No 8 T-DPG-005 74! 742 I Pass JG 8.8.07 No 8 T-DPG-005 74! 742 I Pass JG 8.8.07 No 8 T-DPG-005 74! 742 I Pass JG 8.8.07 No 8 T-DPG-005 74! 742 I Pass JG 8.8.07 No 8 T-DPG-003 742 743 I Pass JG 8.2407 No 8 T-DPG-003 742 743 I Pass JG 8.2407 NO 8 T-DPG-004 748 747 I Pass JG 8.31.07 No T-DPG-004 748 747 I Pass JG 8.31.07 No T-DPG-003 752 750 -2 Pass JG 8.31.07 No T-DPG-004 748 749 D Pass JG 8.31.07 No T-DPG-004 748 749 D Pass JG 8.31.07 No T-DPG-005 752 750 -2 Pass JG 9.17.07 No T-DPG-005 752 752 752 D Pass JG 9.17.07 No T-DPG-005 752 752 752 D Pass JG 9.17.07 No T-DPG-005 746 746 D Pass JG 9.28.07 No T-DPG-005 746 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28.07 No T-DPG-005 741 741 741 I Pass JG 9.28		7-096-00			<u> </u>				,	
T-DPG-005 741 742 1 Pass 36 8.807 No 8 T-DPG-005 741 742 1 Pass 36 8.807 No 8 T-DPG-007 741 742 1 Pass 36 8.807 No 8 T-DPG-007 741 742 1 Pass 36 8.807 No 8 T-DPG-008 741 742 1 Pass 36 8.807 No 8 T-DPG-008 745 747 (Pass 36 8.2407 No 8 T-DPG-003 742 743 1 Pass 36 8.2407 No 8 T-DPG-003 742 743 1 Pass 36 8.2407 No 8 T-DPG-004 748 747 -1 Pass 36 8.307 No 7 T-DPG-004 748 747 -1 Pass 36 8.307 No 7 T-DPG-003 752 750 -2 Pass 36 8.307 No 7 T-DPG-003 752 750 -2 Pass 36 9.17.07 No 7 T-DPG-004 752 752 752 0 Pass 36 9.17.07 No 7 T-DPG-006 752 752 752 0 Pass 36 9.17.07 No 7 T-DPG-006 752 752 752 0 Pass 36 9.17.07 No 7 T-DPG-006 752 752 752 0 Pass 36 9.17.07 No 7 T-DPG-007 746 746 0 Pass 36 9.18.07 No 7 T-DPG-008 752 753 1 Pass 36 9.17.07 No 7 T-DPG-008 752 753 1 Pass 36 9.17.07 No 7 T-DPG-008 752 753 1 Pass 36 9.17.07 No 7 T-DPG-008 752 753 1 Pass 36 9.17.07 No 7 T-DPG-008 752 753 1 Pass 36 9.17.07 No 7 T-DPG-008 752 753 1 Pass 36 9.18.07 No 7 T-DPG-008 746 746 0 Pass 36 9.28.07 No 7 T-DPG-009 746 746 0 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7 T-DPG-009 746 747 1 Pass 36 9.28.07 No 7					+ -					_
1-0P6-005 741 742 1 Pass J6 8.807 Nc 8 1-0P6-005 741 742 1 Pass J6 8.807 Nc 8 1-0P6-006 741 742 1 Pass J6 9.807 No 8 1-0P6-006 741 742 1 Pass J6 9.807 No 8 1-0P6-005 745 744 1 Pass J6 9.807 No 8 1-0P6-003 742 743 1 Pass J6 8.84/7 No 8 1-0P6-004 742 744 1 Pass J6 8.3107 No 8 1-0P6-004 748 747 -1 Pass J6 8.3107 No 7 1-0P6-004 748 749 0 Pass J6 8.3107 No 7 1-0P6-003 752 750 -2 Pass J6 8.3107 No 7 1-0P6-003 752 750 -2 Pass J6 9.17.07 No 8 1-0P6-003 752 750 -2 Pass J6 9.17.07 No 7 1-0P6-004 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 752 752 0 Pass J6 9.17.07 No 7 1-0P6-005 7546 746 0 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-005 746 747 1 Pass J6 9.2807 No 7 1-0P6-006 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7 1-0P6-007 746 747 1 Pass J6 9.2807 No 7		1-0PG-003	741	747				1/26/67		84
T-DPG-087 741 742 Pass & 8.8.07 No & T-DPG-088 741 742 Pass & 6.8.07 No & T-DPG-088 741 742 Pass & 6.8.07 No & T-DPG-088 742 743 Pass & 6.8.047 No & T-DPG-083 742 743 Pass & 6.8.2407 No & T-DPG-083 742 742 & Pass & 6.8.2407 No & T-DPG-084 742 742 & Pass & 6.8.2407 No & T-DPG-084 742 742 & Pass & 6.8.31.01 No & T-DPG-084 748 747 -1 Pass & 16.8.31.01 No & T-DPG-084 748 749 0 Pass & 6.8.31.01 No & T-DPG-084 748 749 0 Pass & 6.8.31.01 No & T-DPG-084 748 749 0 Pass & 6.8.31.01 No & T-DPG-084 742 752 755 -1 Pass & 16.8.31.01 No & T-DPG-084 752 755 -1 Pass & 16.9.17.07 No & T-DPG-086 752 752 0 Pass & 16.9.17.07 No & T-DPG-086 752 752 0 Pass & 16.9.17.07 No & T-DPG-086 752 752 0 Pass & 16.9.17.07 No & T-DPG-086 752 752 0 Pass & 16.9.17.07 No & T-DPG-086 752 753 1 Pass & 16.9.17.07 No & T-DPG-086 752 753 1 Pass & 16.9.17.07 No & T-DPG-086 752 753 1 Pass & 16.9.17.07 No & T-DPG-087 746 746 0 Pass & 16.9.28.07 No & T-DPG-087 746 746 0 Pass & 16.9.28.07 No & T-DPG-085 746 747 1 Pass & 16.9.28.07 No & T-DPG-086 741 741 Pass & 16.9.28.07 No & T-DPG-081 742 742 Pass & 16.9.28.07 No & T-DPG-081 742 742 Pass & 16.9.28.07 No & T-DPG-0		1 -			1		_			
T-DP6-008 THI THE T-DP6-008 THI THE T-DP6-005 T-YS T-YM T-DP6-603 THE T-DP6-603 THE T-DP6-603 THE T-DP6-603 THE T-DP6-603 THE T-DP6-004 THB THB T-DP6-004 THB THB T-DP6-007 THB THB T-DP6-003 TS2 TS0 T-DP6-003 TS2 TS0 T-DP6-003 TS2 TS0 T-DP6-004 TS2 TS0 T-DP6-005 TS2 TS0 T-DP6-005 TS2 TS0 T-DP6-006 TS2 TS2 TS2 TS0 T-DP6-006 TS2 TS2 TS2 TS2 TS2 TS2 TS3 TS3 TS2 TS3 TS2 TS3					-					84
T-DR6-003 742 743 Pass 16 84967 10 8 T-DR6-003 742 743 Pass 16 82407 NO 8 T-DR6-006 745 7444 Pass 16 82407 NO 8 T-DR6-004 748 747 -1 Pass 16 831.07 No T-DR6-004 748 748 0 Pass 16 831.07 No T-DR6-003 752 750 -2 Pass 16 7.17.07 Yes T-DR6-003 752 751 -1 Pass 16 9.17.07 No T-DR6-005 752 752 0 Pass 16 9.17.07 No T-DR6-006 752 752 0 Pass 16 9.17.07 No T-DR6-006 752 752 0 Pass 16 9.17.07 No T-DR6-007 752 752 0 Pass 16 9.17.07 No T-DR6-008 752 753 0 Pass 16 9.17.07 No T-DR6-008 752 753 0 Pass 16 9.17.07 No T-DR6-001 746 0 Pass 16 9.28.07 No T-DR6-005 746 746 0 Pass 16 9.28.07 No T-DR6-005 746 747 1 Pass 16 9.28.07 No T-DR6-007 741 746 0 Pass 16 9.28.07 No T-DR6-007 741 741 0 Pass 16 9.28.07 No T-DR6-007 741 747 1 Pass 16 9.28.07 No T-DR6-007 741 741 0 Pass 16 9.28.07 No					1					94 94
T-DPG-603 742 743 Pass 16 8.2407 NO 8 7DPG-006 7445 7414 Pass 16 8.2407 NO 8 7DPG-004 748 747 -1 Pass 16 8.31.07 No 7 T-DPG-004 748 747 -1 Pass 16 8.31.07 No 7 T-DPG-007 748 748 749 0 Pass 16 8.31.07 No 7 T-DPG-003 752 750 -2 Pass 16 7.17.07 Yes T-DPG-603 752 751 -1 Pass 16 9.17.07 No 7 T-DPG-605 752 752 0 Pass 16 9.17.07 No 7 T-DPG-606 752 752 752 0 Pass 16 9.17.07 No 7 T-DPG-606 752 752 752 0 Pass 16 9.17.07 No 7 T-DPG-607 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 752 753 1 Pass 16 9.17.07 No 7 T-DPG-608 754 746 0 Pass 16 9.28.07 No 7 T-DPG-605 746 746 0 Pass 16 9.28.07 No 7 T-DPG-605 746 747 1 Pass 16 9.28.07 No 7 T-DPG-606 741 746 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-608 746 747 1 Pass 16 9.28.07 No 7 T-DPG-608 746 747 1 Pass 16 9.28.07 No 7 T-DPG-608 746 747 1 Pass 16 9.28.07 No 7 T-DPG-608 746 747 1 Pass 16 9.28.07 No 7 T-DPG-608 746 747 1 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-607 741 741 0 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 744 741 0 Pass 16 9.28.07 No 7 T-DPG-600 744 741 0 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 746 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 743 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 746 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 746 747 1 Pass 16 9.28.07 No 7 T-DPG-600 746 746 747 1 Pass					'					82
T. DPG-006 745 749 1 Pass to 7/24/67 NO 8 TOPG-004 748 747 -1 Pass 36 8 31.07 No T-DPG-004 748 748 0 Pass 36 8 31.07 No T-DPG-003 752 750 -2 Pass 36 9.17.07 Yes 1-DPG-003 752 751 -1 Pass 36 9.17.07 No T-DPG-005 752 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 753 1 Pass 36 9.17.07 No T-DPG-006 754 746 0 Pass 36 9.28.07 No T-DPG-005 746 746 0 Pass 36 9.28.07 No T-DPG-005 746 746 0 Pass 36 9.28.07 No T-DPG-005 746 747 1 Pass 36 9.28.07 No T-DPG-005 746 747 1 Pass 36 9.28.07 No T-DPG-006 746 747 1 Pass 36 9.28.07 No T-DPG-007 741 746 0 Pass 36 9.28.07 No T-DPG-007 741 746 0 Pass 36 9.28.07 No T-DPG-007 741 741 1 Pass 36 9.28.07 No T-DPG-007 741 741 741 1 Pass 36 9.28.07 No T-DPG-007 741 741 1 Pass 36				742	1					89
TOPG-004 748, 747 -1 Pass 36 8 31.07 No T-DPG-003 752 750 -2 Pass 36 9.17.07 No T-DPG-004 752 751 -1 Pass 36 9.17.07 No T-DPG-005 752 752 0 Pass 36 9.17.07 No T-DPG-006 752 752 0 Pass 36 9.17.07 No T-DPG-008 752 753 1 Pass 36 9.17.07 No T-DPG-008 752 753 1 Pass 36 9.17.07 No T-DPG-003 746 746 0 Pass 36 9.28.07 No T-DPG-004 746 746 0 Pass 36 9.28.07 No T-DPG-005 746 746 0 Pass 36 9.28.07 No T-DPG-005 746 747 1 Pass 36 9.28.07 No T-DPG-006 746 7		1 . /3/								82
T-086-004 748 747 -1 Pass 36 831.07 No T-086-007 748 748 0 Pass 36 831.07 No T-086-007 748 748 0 Pass 36 831.07 No T-086-003 752 750 -2 Pass 36 9.17.07 Yes 1-086-003 752 751 -1 Pass 36 9.17.07 Yes 1-086-005 752 752 0 Pass 36 9.17.07 No T-086-005 752 753 1 Pass 36 9.17.07 No T-086-003 746 746 0 Pass 36 9.28.07 No T-086-005 746 746 0 Pass 36 9.28.07 No T-086-005 746 746 0 Pass 36 9.28.07 No T-086-005 746 747 1 Pass 36 9.28.07 No T-086-005 746 74					70					89
T-DPG-007 748 748 0 Pass 16 331.07 No T-DPG-003 752 750 -2 Pass 16 9.17.07 Yes T-DPG-003 752 751 -1 Pass 16 9.17.07 No T-DPG-005 752 752 0 Pass 16 9.17.07 No T-DPG-006 752 753 1 Pass 16 9.17.07 No T-DPG-006 752 753 1 Pass 16 9.28.07 No T-DPG-003 746 746 0 Pass 16 9.28.07 No T-DPG-005 746 747 1 Pass 16 9.28.07 No T-DPG-005 746 747 1 Pass 16 9.28.07 No T-DPG-006 746 749 0 Pass 16 9.28.07 No T-DPG-006 746 749 0 Pass 16 9.28.07 No T-DPG-006 748					-	Pass				76
T-DPG-004 744 3 Ars Ty 7-7-07 (V) 88 T-DPG-003 752 750 -2 Pass J6 9.17.07 Yes T-DPG-004 752 751 -1 Pass J6 9.17.07 No T-DPG-005 752 752 0 Pass J6 9.17.07 No T-DPG-006 752 752 0 Pass J6 9.17.07 No T-DPG-006 752 752 0 Pass J6 9.17.07 No T-DPG-007 752 752 0 Pass J6 9.17.07 No T-DPG-008 752 753 1 Pass J6 9.17.07 No T-DPG-008 752 753 1 Pass J6 9.17.07 No T-DPG-003 746 746 0 Pass J6 9.28.07 No T-DPG-003 746 746 0 Pass J6 9.28.07 No T-DPG-005 746 747 1 Pass J6 9.28.07 No T-DPG-006 741 747 1 Pass J6 9.28.07 No T-DPG-006 741 747 1 Pass J6 9.28.07 No T-DPG-007 741 741 0 Pass J6 9.28.07 No T-DPG-008 741 741 1 Pass J6 9.28.07 No					0					76
T-DP6-003 752 750 -2 fass J6 9.17.07 Yes T-DP6-004 752 751 -1 Pass J6 9.17.07 No T-DP6-605 752 752 0 Pass J6 9.17.07 No T-DP6-006 752 752 0 Pass J6 9.17.07 No T-DP6-006 752 752 0 Pass J6 9.17.07 No T-DP6-007 752 753 1 Pass J6 9.17.07 No T-DP6-003 746 0 Pass J6 9.18.07 No T-DP6-003 746 0 Pass J6 9.28.07 No T-DP6-005 746 0 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-006 741 740 0 Pass J6 9.28.07 No T-DP6-006 741 747 1 Pass J6 9.28.07 No T-DP6-006 741 741 1 Pass J6 9.28.07 No T-DP6-007 741 741 0 Pass J6 9.28.07 No T-DP6-007 741 741 1 Pass J6 9.28.07 No		~~~								80
T-DP6-004 752 751 -1 Pass 16 9.17.07 No T-DP6-005 752 752 0 Pass J6 9.17.07 No T-DP6-006 752 752 0 Pass J6 9.17.07 No T-DP6-006 752 752 0 Pass J6 9.17.07 No T-DP6-007 752 752 0 Pass J6 9.17.07 No T-DP6-008 752 753 1 Pass J6 9.17.07 No T-DP6-008 746 0 Pass J6 9.28.07 No T-DP6-003 746 0 Pass J6 9.28.07 No T-DP6-005 746 0 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-006 746 747 1 Pass J6 9.28.07 No T-DP6-007 741 746 0 Pass J6 9.28.07 No T-DP6-007 741 746 0 Pass J6 9.28.07 No T-DP6-007 741 741 0 Pass J6 9.28.07 No T-DP6-007 741 741 0 Pass J6 9.28.07 No T-DP6-007 741 741 1 Pass J6 9.28.07 No			757		_		-			74
T-DP6-605 752 752 0 Pass J6 9.17.07 No T-DP6-606 752 752 0 Pass J6 9.17.07 No T-DP6-607 752 752 0 Pass J6 9.17.07 No T-DP6-608 752 753 1 Pass J6 9.17.07 No T-DP6-608 752 753 1 Pass J6 9.17.07 No T-DP6-603 746 0 Pass J6 9.28.07 No T-DP6-603 746 746 0 Pass J6 9.28.07 No T-DP6-605 746 747 1 Pass J6 9.28.07 No T-DP6-605 746 747 1 Pass J6 9.28.07 No T-DP6-605 746 747 1 Pass J6 9.28.07 No T-DP6-607 746 748 749 749 749 749 749 749 749 749 749 749										74
F-DP6-006 752 752 0 Pass J6 9.17.07 No 7-DP6-007 752 752 0 Pass J6 9.17.07 No 7-DP6-008 752 753 1 Pass J6 9.17.07 No 7-DP6-008 752 753 1 Pass J6 9.17.07 No 7-DP6-003 746 746 0 Pass J6 9.28.07 No 7-DP6-005 746 746 0 Pass J6 9.28.07 No 7-DP6-005 746 747 1 Pass J6 9.28.07 No 7-DP6-005 746 747 1 Pass J6 9.28.07 No 7-DP6-006 741 746 0 Pass J6 9.28.07 No 7-DP6-006 741 741 1 Pass J6 9.28.07 No 7-DP6-007 74					0			9.17.00		74
T-DP6-000 752 752 0 Pass J6 9.17.07 No T-DP6-000 752 753 1 Pass J6 9.17.07 No T-DP6-000 752 753 1 Pass J6 9.28.07 No T-DP6-003 746 746 0 Pass J6 9.28.07 No T-DP6-004 746 746 0 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-005 746 747 1 Pass J6 9.28.07 No T-DP6-007 746 0 Pass J6 9.28.07 No T-DP6-007 746 747 1 Pass J6 9.28.07 No T-DP6-007 746 749 740 740 740 740 740 740 740 740 740 740					0					74
T-DP6-008 752 753 Pass J6 9.17.07 J2 T-DP6-001 746 0 Pass J6 9.28.07 No T-DP6-003 746 746 0 Pass J6 9.28.07 No T-DP6-005 746 747 Pass J6 9.28.07 No T-DP6-005 746 747 Pass J6 9.28.07 No T-DP6-005 746 747 Pass J6 9.28.07 No T-DP6-006 741 745 0 Pass J6 9.28.07 No T-DP6-007 741 746 0 Pass J6 9.28.07 No T-DP6-007 741 Pass J6 9.28.07 No T-DP6-007 741 Pass J6 9.28.07 No T-DP6-007 741 Pass J6 9.28.07 No					0			9 17 07	17	74
T-DR6-001 746 746 0 Pass J6 9.28.07 No T-DR6-003 746 746 0 Pass J6 9.28.07 No T-DR6-004 746 746 0 Pass J6 9.28.07 No T-DR6-005 746 747 1 Pass J6 9.28.07 No T-DR6-006 746 747 1 Pass J6 9.28.07 No T-DR6-007 746 747 1 Pass J6 9.28.07 No T-DR6-007 746 747 1 Pass J6 9.28.07 No T-DR6-007 746 747 1 Pass J6 9.28.07 No T-DR6-004 746 747 1 Pass J6 9.28.07 No T-DR6-001 733 732 1 Pass 68 10-19-01 100 7								9 17.07	1)-	74
T-DP6-003 746 746 0 Pass 16 9.28.07 No 7 T-DP6-DD5 746 0 Pass J6 9.28.07 No 7 T-DP6-DD5 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD7 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD7 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD7 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD 746 747 1 Pass J6 9.28.07 No 7 T-DP6-DD 733 732 1 Pass 68 10-19-0 100 7 T-DP6-DD 733 732 1 Pass 68 10-19-0 100 7		T-DP6-001		746	0	Pass			1/2	76
T-DP6-DN4 746 746 0 Pass J6 9.28.07 No - 1-DP6-DO5 746 747 1 Pass J6 9.28.07 No - 1-DP6-DOG 746 747 1 Pass J6 9.28.07 No - 1-DP6-DOG 746 747 1 Pass J6 9.28.07 No - 1-DP6-DO7 746 0 Pass J6 9.28.07 No - 1-DP6-DD4 746 747 1 Pass J6 9.28.07 No - 1-DP6-DD4 746 747 1 Pass J6 9.28.07 No - 1-DP6-DD4 746 749 -2 Pass J6 9.28.07 No - 1-DP6-DD4 733 732 1 Pass 28 16-16-27 NO - 1-DP6-DD3 733 732 1 Pass 28 16-16-27 NO - 1-DP6-DD3 733 732 1 Pass 28 16-16-27 NO -		T-DP6-003			0	Pass				76
1-PP6-005 746 747 1 Pass J6 9.28.07 No 1-DP6-006 746 747 1 Pass J6 9.28.07 No 1-DP6-007 746 0 Pass J6 9.28.07 No 1-DP6-007 746 747 1 Pass J6 9.28.07 No 1-DP6-004 746 747 1 Pass J6 9.28.07 No 1-DP6-004 746 747 1 Pass J6 9.28.07 No 1-DP6-004 746 749 -2 Pan 14 10/2/01 NO 7 1-DP6-001 733 732 1 Pass 28 16-16-07 NO 7 1-DP6-003 733 732 1 Pass 28 16-16-07 NO 7		T-096-004	746	746		Pass				70
T-DP6-006 746 747 Pass 16 9.28.07 No 1-DP6-007 746 747 Pass 16 9.28.07 No 1-DP6-008 746 747 Pass 16 9.28.07 No 1-DP6-008 746 747 Pass 16 9.28.07 No 1-DP6-008 746 747 Pass 16 9.28.07 No 1-DP6-001 733 732 Pass 28 10-19-01 100 7 1-DP6-003 733 732 Pass 28 10-19-01 100 7		I-DP6-005	746							70
T-DP6-007 746 746 0 Pass 45 9.2807 No T-DP6-006 746 747 1 Pass 16 9.28.07 No T-DP6-004 746 747 2 Pass 16 9.28.07 No T-DP6-001 733 732 1 Pass 28 16-19-01 100 7 1-DP6-003 733 732 1 Pass 28 16-19-01 100 7		T-DP6 -006			1					76
T-096-006 746 747 Pass 16 9.28.07 No 7 7.086-004 746 744 -2 PAN HI 10/2/01 NO 7 T-096-001 733 732 Pass 28 16-18-01 NO 7 T-096-003 733 732 Pass 28 16-18-01 NO 7					Ō					70
7.086-004 746 744 -2 PAN AN 10/2/01 AD 7 7.086-001 733 732 1 Pass 28 16-18-18 NO 7 7-086-003 733 732 1 Pass 28 16-18-27 NO 7		T-DP6-008		747						20
7-096-001 733 732 1 Pass as 10-19-00 100 7 7-096-003 733 732 1 Pass as 10-15-07 MD 7		7.085-004		744'	-2					72
1-086-003 733 732 PESC ES 10-15-07 NO 7		T-086-001	733	732	1					23
			733	732						73
T 000 101 721 721 721 721 721 721 721 721 721 72	1	T-006-601	733	731	2					6.3
DPG-006 733 732 1 Pass KG 10/19/07 no 7			733	732			-			73
T-DP6-008 732 733 Pass X 10.19.07 No -	1			733)	Pass				73
	. 1									

Pallflex® Filters

Description: Wide range of filters uniquely suited for a broad range of air monitoring applications. Can be used for high temperature and hot gas air monitoring applications.

Specifications

Description	Tissuquartz Filters	Emfab Filters	Fiberfilm Filtes
Filter Media	Pure quartz, no binder	Borosilicate microfibers reinforced with woven glass cloth and bonded with PTFE	Heat resistant borosilicate glass fiber coated with fluorocarbon. (TFE)
Diameter :	25 - 90 mm (and 8 x 10 in.)	12 - 142 mm (and 8 x 10 in.)	25 - 100 mm (and 8 x 10 in.)
Typical Thickness	432 µm (17 mils)	178 µm (7 mils)	203 µm (8 mils)
Typical Filter Weight	5.8 mg/cm²	5.0 mg/cm ²	3.4 mg/cm ²
Typical Water Flow Rate at 0.35 bar (5 psi)	220 mL/min/cm²	32 mL/min/cm²	220 mL/mín/cm²
Typical Air Flow Rate at 0.7 bar (10 psi) -	¹ 73 L/min/cm ²	68 L/min/cm²	180 L/min/cm²
Maximum Operating Temperature - Air	1093 °C (2000 °F)	260 °C (500 °F)	315.5 °C (600 °F)
Typical Aerosol Retention*	99.90%	99.90%	96.40%
pH in Bolled Water Extract	6.5 - 7.5	Not available	Not available

Following ASTM D 2986-71 0.3 um (DOP) at 32 L/min/100 cm 2 filter media

APEX INSTRUMENTS REFERENCE METER VERIFICATION USING WET-TEST METER #11AE6 2-POINT ENGLISH UNITS

Celibration Meter in	formetion
Wet Test Mater Model #	AL20
Wet Tout Meter Seriel #	11AE6
Wel Test Meler Geruna	1.00000

	Celibr	etion Conditions	5:
Date	Time	1-May-07	10:39
Barometric I	Lessnia	29.66	ln Hg
Calibration	Technician	SH	
DGM Model	Number	S120	
DGM Serial	Number	1512377	

	Factora/Conversion	
Std Temp	526	°R
Bld Press	29,92	in Hg
K ₁	17.647	°R∕In Hg

					Celibra	tion Deta							Results	
Run Time	C		Metering	Console					Calibration Meter				Dry Gas Meter	
	DGM Input	Volume	Yolume	Sample	Outlet Temp	Oullet Temp	Votume	Votume	Sample	Outjei Temp	Outlet Temp	Celibration	n Fector	Flowrete
Elapsed	Pressure	initial	Final	V of uma	tritlat	Final @	infilal	Final	V olume	initial	Final	From 15 Point	Current	Sid & Cor
(⊖)	ም	(/)	(/)		()	(س)	(Vw)	(Ass)		C	C	m	m	(Qm(raspant)
min	in H₂O	cubic feel	cubic feet	cubic feel	°F	*# . ³⁷	Cubic lee!	cubic feet	cubic feet	•F	۴			c/m
6	-5.2	848.7425	856.6575	7.915	77	7,9	9807,28	9815.031	7.751	76	75.9	0.9973	0.9959	1,262
											Veriation	0.14%	must be less	6 than 1.5%
10	-2.7	856.8575	883,2957	6,6382	79	79	9815.031	9821,581	6.55	75.9	75.9	1.0087	0.9991	0.840
											Verlation	0.75%	must be less	s then 1.5%

I cartify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, App A, Method 5, Paragraph 7.1.2.2, using the Precision Wet Test Meter # 11AE6, which in turn was calibrated using the American Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.),

Simpature

Date 5-1-07

let:

APEX INSTRUMENTS REFERENCE METER CALIBRATION USING WET-TEST METER #11AE6 15-POINT ENGLISH UNITS

Celibration Meter In	formation
Wet Test Meter Model #	AL20
Wet Test Motor Social #	11AE8
Wet Test Meter Gemma	1.00000

Celibration Conditions							
Date	Thme	30-Apr-03	13:10				
Berometric I	reseura	29.6	In Hg				
Celibration 1	echnicien	RM					
DGM Seriel	Number	1512377					

Fectors/Conversione							
Std Temp	528	*R					
ltd Press	20.02	In Hg					
Ç.	17.647	°R/iπ Hg					

	Results						on Dela	Celibrati							
	Dry Ges Meter	Calibration Meter Dry		Calibration Meter Dry G					Dry Ges Meter			Run Time			
Flow	on Fector	Cetibretic	Outlet Temp	Outlet Temp	Valunte	Volume	Outlet Temp	Gutlet Temp	Volume	Volume	Meter	11			
Btd &	Veristion	Velue	Finel	Initial	Final	Intiel	Finel	intial	Final	Initial	Pressure	Elapsed			
(Q minis	(Y,,,,,,Y,,,,,)	m	(L)	(LJ)	(Vec)	(AM)	(Park)	C-D	(A ⁻⁷)	(Vm)	(P_)	(0)			
efr			°F	°F	cubic feet	cubic feet	*F	ak.	cubic feet	cubic teet	In H ₂ O	min			
1.18		0.9958	79	79	670.080	663.955	85	85	36.104	29.798	-8.4	5.00			
1.16		0.9977	79	79	878.150	670.080	86	88	42,393	36.104	-8.4	5.00			
1.16	0.003	0.9985	79	79	882.235	676,150	86	86	48.672	42.393	-8.4	5.00			
1.10	Averagee	0.9973													
0.96		1.0019	79	79	688,190	682.235	88	67	54,788	48.672	-4.8	5.00			
0.96		1.0048	78	79	711.980	708.025	89	89	79,184	73.069	-4.6	6.00			
0.96	0.003	1.0051	79	79	717.920	711.980	89	69	85.282	79.184	-4.8	6.00			
0,9	Averages	1.0039													
0.73		1.0061	79	79	744,235	717.920	89	89	112.162	85.282	-3.6	34.50			
0.73		1,0074	79	79	750.330	744,235	89	89	118.386	112,182	-3.6	8.00			
0.74	0.001	1,0068	79	79	756.620	750.330	89	89	124.814	118.386	-3.6	8.25			
0.74	Averages	1,0087	78	70 1	730.0201	750.330 [08 I		124.0 [4]	110.300	-3.0	6.25			
					1		-	-	T	- 1		1			
0.53		1,0087	80	79	762.170	758,620	90	89	130.481	124,814	-2.7	10.00			
0.53		1.0071	80	80	787.700	782.170	90	90	136.094	130.481	-2.7	10.00			
0.53	0.002	1.0085	80	80	773.245	767,700	89	69	141.733	136.094	-2.7	10.00			
0.53	Ayerages	1,0074	L												
0.42		1,0083	80	80	778.895	773.245	89	89	147.474	141.733	-2.3	13.00			
0.42	2200.00	1.0084	80	80	784.550	776.895	69	89	153.208	547,474	-2.3	13.00			
0.42	0.003_	1.0093	80	80	790.215	784.550	89	89	158,947	153.208	-2.3	13.00			
0.42	Averages	1,0080													
		1.0047	verall Average Y	_											

Note: For Cathretion Factor Y, the ratio of the reading of the cathretion meter to the dry gee mater, the variation between the maximum and minimum values at each flow rate must not exceed 0.030.

Note: For the Oversit Average Cathretion Factor, Y, the acceptable range is between 0.95 and 1.05.

I certify that the above Dry Gee Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using the Precision Wet Test Meter # 11AE6, which in turn was calibrated using the American Bell Prover # 8785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.).

Signature

Date

04/30/07

Certificate of Calibration

Customer:

AIR COMPLIANCE TESTING

Customer P.O.:

OPS224

Instrument:

Omega CL23A

Work Order Number:

702998714

Description:

CALIBRATOR THERMOMETER

Serial Number:

T-229854

Equipment I.D.#:

702998714

A.R. Number:

702-4171

Ca1-3

Omega Engineering, Inc. hereby certifies that the above instrumentation has been calibrated and tested to meet or exceed the published specifications. This calibration and testing was performed using instrumentation and standards that are traceable to the National Institute of Standards and Technology. Omega Engineering, Inc. is in compliance with ISO 10012-1, ISO 9001:2000 and ANSI/NCSL Z540-1-1994. This certificate shall not be reproduced, except in full. without the written consent of Omega Engineering, Inc.

CALIBRATION INFORMATION

Cal Date: Cal Due Date: 22-Feb-07 22-Feb-08 Temperature: **Humidity:**

22 C ± 5 C 40% ± 20%

Absolute Uncertainty: 0.19F

Comments:

Pass: Y

Technician: VA

Seals OK:

No

Procedure: QAP-2100

Certificate #:

702998714

STANDARDS USED FOR CALIBRATION

Asset Number	Description	NIST Traceable Number	Cal. Date	Due Date
ST-098-04	FLUKE 5700A Multicalibrator	10NNST09804	19-Mar-06	19-Mar-07
CL-098-19	Omega TRCIII Ice Point	10NNCL09819	21-Jul-06	21-Jul-07
DM-098-22	Agilent 34401A Multimeter	10NNDM09822	11-A⊔g-06	11-Aug-07

Metrology Technician:

Quality Assurance Inspector:

LAKE BALANL COMPANY INC.

PO Box 215 • Madison, Ohio 44057-0215

(440) 428-3993 • (800) 334-6756 • FAX (440) 428-2662

Service and Calibration Report

Customer		Bldg.	Rm#	ln	dividual		Instrument	3 96	Pc	ige 🗦	of	
AIR COMPLIANCE MA		MAN				Cust. # A-BAL-007			Cal. Point			
5525 CANI						Mfr AN	\(\sigma\)		Full Scale	1200	3	
VALLEYVIEW	, OHID 44	125				Model # /	FK-12001 P 1861 7	26	Grads	0.19		
Certific	cate	Standard	QSP	QWI	Environment Conditions	Ambient Temp			librated	D	ate D	υe
Nº 9	271	17025	175.4	02	GOOD	18.52	41.4%	2/23	3/07	2/0	28/	08
Units	As Found D	ata	Final Test D	ata	Decreasing Loa	d Stro	ain Load		Offset\Corr	ner Load		200
Oq	0.09		0.09		1200.09			C	D	Bef	ore	After
0g 100g	100.09		100.09		800.0g		//		D	A 0.	09	5
500g	500g 500.0g		500.04	,	500. Og	NIA		A (A	A B B		19	A
800/2	800.Cg		800.0g		100.00					C Del	29	<u>M_</u>
12009	1200.Da		1200.00		0.00				<u>c</u>	D 0.4	99	E
								B	A			
Comments									Parts 1	nstalled		
			2 2425				4 4 4	Part D	escription	Qty	Pric	e Each
		55(6)4 - 6,59(5)	- X-4				×	1 1 100				mira miliate e iste.
Standards Used	NIST Traceable	No.	Serial No.		Class	Standard D	Due Date					
5KgWTSET	0739	7	9120			4/27	107					
/												
			~~~~						0.65			
Uncertainty of	measurement in	this report	is taken int	o consid	leration if entere	d	Uncertainty of Measurement		10			
into box marke	ed.						(K=2)			111		
Pass/Fail or in	out of tolerand	e are the	opinions o	f Lake B	alance Compar	ny	9.06 mg	Tech R	ep All	Jakos	2	
	ments made, p		•		•		Passed Failed	Custon	ner		D	ate
	ssociated with t			·			$\sqrt{}$					
						•						

This Report shall not be reproduced except in fu" thout written approval of Lake Balance Co., Inc.

Superior Quality Emission Testing.

> Valid Results Guaranteed.



P.O. Box 41156 Cleveland, Ohio 44141 1-800-EPA-AIR1 <u>www.aircomp.com</u> testing@aircomp.com

David Hearne Cleveland Department of Public Health 1925 St Clair Ave Cleveland, OH 44114

Dear David:

This letter accompanies the attached Intent to Test (ITT) Notification Form that we have completed on the behalf of our client, BF Goodrich Plating, located in Cleveland, OH. The purpose of this emissions testing project is to satisfy the testing requirements described in section A.V.2 of the Ohio EPA Title V permit for each emission unit.

The scope of this testing project is to measure Total Chromium using EPA Method 306 from the Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001) and Hard Chrome Plating Tanks 7 - 11 (P002) at their respective Scrubber Exhaust Stacks. The above testing will be conducted during 10,825 amp-hr/hr (P001) and during 3,000 amp-hr/hr (P002) rectifier outputs respectively.

As is written in this ITT, a date of September 27, 2007 has been selected as the test day(s) with testing equipment set-up occurring on the day before. Typically Run No. 1's start time is targeted for 8:00 am. If this start time changes, Air Compliance Testing or facility personnel will contact you in advance to notify you of the new starting time.

If you have any questions regarding the scope of this testing project, the scheduled test day, or the process(es) being tested, please don't hesitate to call Greg Goga of BF Goodrich Plating at 216-429-4423, or myself, and we would be happy to assist you in any way possible.

Thank you again for your careful consideration, and I am looking forward to working with you on this upcoming compliance testing project.

Sincerely,

Air Compliance Testing, Inc.

David B. Monro Project Manager

cc: Greg Goga, BF Goodrich Plating

#### INTENT TO TEST NOTIFICATION (One Emissions Unit Per Sheet)

	-
AGENCY USE ONLY	چې.
	1. '
是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	2
Date: Received	8
	12
NorAssigned	7.
	1
A STATE OF THE PROPERTY OF THE	37.8

Facility Premise No. <u>1318005949</u> Emissions Unit PTI No. <u>Title V</u>

Proposed Test Date <u>September 27, 2007</u> SCC Code <u>30901018</u>

A. Facility Contact Information:

Name BF Goodrich Plating

Address 2800 E 33rd St, Cleveland OH 44115-3602

Contact Person Greg Goga

Telephone Number (O) 216-429-4423 (Cell) N/A

E-Mail greg.goga@goodrich.com

**Testing Firm Information:** 

Name Air Compliance Testing, Inc.

Address PO Box 41156, Cleveland OH 44141-0156

Contact Person David B. Monro

Telephone Number (O) 216 525-0900 (Cell) 440-821-7814

E-Mail davem@aircomp.com

B. Test Location Information

Name BF Goodrich Plating

Address 2800 E. 33 St., Cleveland OH 44115

Contact Person Greg Goga

Telephone Number (Office) 216-429-4423 (Cell) N/A

C. Test Plan and Emissions Unit Information Table: List the applicable information under each respective column heading.

Emission Unit	StackID	Test Location	Control Equipment	Monitoring Equipment	Poilutant(s) to be Tested	EPA Test Method	Audit Sample Available?	Number of Sampling Points	Total Time per Test Run (min)	Number of Sampling Runs
Hard Chrome Plating Tanks 7 - 11 (P002)	В	Scrubber Exhaust Stack	Scrubber	Pressure Drop	Stack Gas Velocity and Volumetric Flow Rate	1,2, and 4	No	Up to 24	120	3
Hard Chrome Plating Tanks 7 - 11 (P002)	В	Scrubber Exhaust Stack	Scrubber	Pressure Drop	Total Chromium	306	Yes	up to 24	120	3

Source is testing to comply with (check all that apply): Title V Permit

D. What is the maximum rated capacity? 3,000 amp-hr/hr

Will Emissions Unit be operated at the maximum capacity given in its permit-to-install or permit-to-operate? Yes [X] No []

Specify how the operating rate will be determined during testing? (*See notes 1, 2 and 3 on page 2.): Normal facility recordkeeping procedures.

Are any modifications to USEPA Reference Method(s) proposed? If "no", then no modification, however minor, will be accepted. If yes, list each test method and section being modified, and attach a detailed modification description and justification: Yes [] No [X]

Sampling Location(s): Inlet [] Outlet [X] Simultaneous []

Will cyclonic flow check(s) be conducted? Yes [X] No [] If potential to be physically possible exists.

Fuel Sampling: Coal-Proximate [] Ultimate [] Other [X] If other specify: N/A

Emission Rate to be calculated using: <u>F-Factor [] Ultimate Coal Analysis [] Other [X] If other specify: As dictated by EPA Method 306 calculation algorithms</u>

Does the test method require audit samples? Yes [X] No []: Method 306

Has any maintenance or parts replacement been performed on the emissions unit or the control equipment within the last year? Yes [X] No [ ]: Normal routine maintenance

(Note: Some maintenance, such as installing new filter bags in a baghouse, or replacing the activated carbon in an adsorber, may disqualify the emissions unit from a performance test until a sufficient amount of time has elapsed to ensure a test which will be representative of normal operations.)

E. Sample Train Calibration: All affected measuring and monitoring equipment should be calibrated within 60 days of the scheduled testing.

THE FOLLOWING ADDITIONAL INFORMATION SHALL BE SUBMITTED AS ATTACHMENTS:

- F. Sample Train Information:
  - 1. A schematic diagram of each sampling train.
  - 2. The type or types of capture media to be used to collect each gas stream pollutant. (Include filter specification sheets)
  - 3. Sample tube type, (e.g., glass, teflon, stainless steel, etc.)
  - 4. Probe cleaning method and solvent to be used, if applicable.
  - 1. See attached sample train diagram.
  - 2. Type or types of capture media: M1: N/A M2: N/A M306: 0.1N NaOH M4: Samples are condensed in H2O and adsorbed onto Silica Gel.
  - 3. Sample tube type: M1: N/A M2: N/A M4: borosilicate glass or stainless steel with connecting borosilicate glassware.
  - 4. Probe cleaning method and solvent to be used: M1: N/A M2: N/A M306: Probe liner is rinsed using 0.1N NaOH as the reagent. It is not necessary to brush the probe liner. If a probe brush is used it must be non-metallic. M4: N/A
- G. Laboratory Analysis:

A description of the laboratory analysis methods to be used to determine the concentration of each pollutant.

M1: N/A M2: N/A M306: Analysis for total chrome by graphite furnace atomic absorption spectroscopy (GFAAS). M4:

A gas sample is extracted at a constant rate (or isokinetically in conjunction with other methods) from the source;

moisture is removed from the sample stream and determined either volumetrically or gravimetrically.

H.

#### **Description of Operations:**

A description of any operation, process, or activity that could vent exhaust gases to the test stack. This shall include the description and feed rate of all materials capable of producing pollutant emissions used in each separate operation.

- Note 1: All testing shall be performed at maximum rate capacity as specified by the equipment manufacturer or at the maximum rate actually used in the emissions unit operation, whichever is greater, or at any other rate specified by the administrator.
- Note 2: If the emissions unit is not operated at maximum capacity, or as close as possible thereto, the emissions unit might be de-rated to that production capacity.

Note 3: Production records and parametric monitoring records must be included in the final report.

The Hard Chrome Plating Tanks 7 – 11 (P001) are the only units vented through the scrubber to the exhaust.

#### I. Stack and Vent Description:

A dimensional sketch or sketches showing the plan and elevation view of the entire ducting and stack arrangement. The sketch should include the relative position of all processes or operations venting to the stack or vent to be tested. It should also include the position of the ports relative to the nearest upstream and downstream gas flow disturbance or duct dimensional change. The sketches should include the relative position, type, and manufacturer's claimed efficiency of all gas cleaning equipment.

A cross sectional dimensional sketch of the stack or duct at the sampling ports, showing the position of sampling points. In case of a rectangular duct, show division of duct into equal areas.

Please see the attached stack diagram.

#### J. Safety:

Describe all possible safety hazards including such items as the presence of toxic fumes, high noise levels, areas where eye protection is required, etc. Note: Conditions considered unsafe at the time of the test will cause postponement.

The Plant requires the use of safety glasses, safety shoes, hard hats, and hearing protection (In designated areas). At this time, and to the best of our belief and knowledge, there are no toxic fumes or other hazards expected to be on site at this facility that would cause you to formally prepare for your exposure to them. It is our recommendation however, to consult plant personnel regarding its safety policies before accessing the production areas on this site. Air Compliance Testing personnel will be required to wear safety shoes and safety glasses at all times while on site at the facility to comply with our own company policy.

#### K. Test Report:

The final test report must contain, as a minimum, the following information to be acceptable:

All raw data sheets, including strip charts where applicable

Process data

Results of audit samples

All lab analyses data

All calibration data

Complete chain-of-custody records for all samples removed from the facility for recovery and/or analysis All formulas used in calculating emission rates if different than specified in the applicable reference method An explanation of all disruptions encountered during the test period, (i.e., Meter box changes, process shutdowns, broken glassware, etc.)

Backhalf analysis if determining particulate emissions that are 10 microns in aerodynamic diameter or less

Note: In accordance with OAC 3745-15-04 the report must be submitted within 30 days of conducting the test. The final test report will comply with all requirements in this ITT.

#### L. Test Postponement

It is understandable that a test will need to be postponed due to circumstances that would not allow representative conditions to be established, such as recent maintenance or modification, equipment failure, or the absence of key personnel. However, concern that a test will result in a determination of non-compliance is not a valid reason for postponement, and a facility decision to postpone without a valid reason may result in enforcement action against the facility.

#### INTENT TO TEST NOTIFICATION (One Emissions Unit Per Sheet)

THE WOLF WOLF WILLIAM STATE OF THE STATE OF	PYSKY, T. W. T. B. T. T. T.
TACLE NO YOUSE ON PYORES. AND AND SOME	2 mt - 40 mm - 238
THE PARTY OF THE P	A TO THE PROPERTY.
Data Dacolyadit e a la l	The state of the s
Date Mecely Bush and Control of the	· · · · · · · · · · · · · · · · · · ·
Date:Receiveds Date:Receiveds No. Assigned	少 罗纳教教教
THE REPORT OF THE PROPERTY OF	<b>一种种种种种类型</b>
EINU: Masiumeu war and the same was the same and the same	The last Street Last Sales
Address which were the second state of the sec	1. 1

Facility Premise No. <u>1318005949</u> Emissions Unit PTI No. <u>Title V</u> Proposed Test Date <u>September 27, 2007</u> SCC Code 30901018

A. Facility Contact Information:

Name <u>BF Goodrich Plating</u>
Address <u>2800 E 33rd St, Cleveland OH 44115-3602</u>
Contact Person <u>Greg Goga</u>
Telephone Number (O) <u>216-429-4423</u> (Cell) <u>N/A</u>
E-Mail <u>greg.goga@goodrich.com</u>

Testing Firm Information:

Name <u>Air Compliance Testing, Inc.</u>
Address <u>PO Box 41156, Cleveland OH 44141-0156</u>
Contact Person <u>David B. Monro</u>

Telephone Number (O) 216 525-0900 (Cell) 440-821-7814

E-Mail davem@aircomp.com

B. Test Location Information

Name BF Goodrich Plating

Contact Person Greg Goga

Address 2800 E. 33 St., Cleveland OH 44115

Telephone Number (Office) 216-429-4423 (Cell) N/A

C. Test Plan and Emissions Unit Information Table: List the applicable information under each respective column heading.

Emission Unit	StackiD	Test Location	Control Equipment	Monitoring Equipment	Pollutant(s) to be Tested	EPA Test Method	Audit Sample Available?	Number of Sampling Points	Total Time per Test Run (min)	Number of Sampling Runs
Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001)	A	Scrubber Exhaust Stack	Scrubber	Pressure Drop	Stack Gas Velocity and Volumetric Flow Rate	1,2, and 4	No	Up to 24	120	3
Hard Chrome Electroplating Tanks 1, 2B, and 2F (P001)	А	Scrubber Exhaust Stack	Scrubber	Pressure Drop	Total Chromium	306	Yes	up to 24	120	3

Source is testing to comply with (check all that apply): Title V Permit

D. What is the maximum rated capacity? 10,825 amp-hr/hr

Will Emissions Unit be operated at the maximum capacity given in its permit-to-install or permit-to-operate? Yes [X] No []

Specify how the operating rate will be determined during testing? (*See notes 1, 2 and 3 on page 2.): Normal facility recordkeeping procedures.

Are any modifications to USEPA Reference Method(s) proposed? If "no", then no modification, however minor, will be accepted. If yes, list each test method and section being modified, and attach a detailed modification description and justification: Yes [] No [X]

Sampling Location(s): <u>Inlet [] Outlet [X] Simultaneous []</u>

Will cyclonic flow check(s) be conducted? Yes [X] No [] If potential to be physically possible exists.

Fuel Sampling: Coal-Proximate [] Ultimate [] Other [X] If other specify: N/A

Emission Rate to be calculated using: <u>F-Factor [] Ultimate Coal Analysis [] Other [X] If other specify: As dictated by EPA Method 306 calculation algorithms</u>

Does the test method require audit samples? Yes [X] No []: Method 306

Has any maintenance or parts replacement been performed on the emissions unit or the control equipment within the last year? Yes [X] No []: Normal routine maintenance

(Note: Some maintenance, such as installing new filter bags in a baghouse, or replacing the activated carbon in an adsorber, may disqualify the emissions unit from a performance test until a sufficient amount of time has elapsed to ensure a test which will be representative of normal operations.)

E. Sample Train Calibration: All affected measuring and monitoring equipment should be calibrated within 60 days of the scheduled testing.

THE FOLLOWING ADDITIONAL INFORMATION SHALL BE SUBMITTED AS ATTACHMENTS:

#### F. Sample Train Information:

- 1. A schematic diagram of each sampling train.
- 2. The type or types of capture media to be used to collect each gas stream pollutant. (Include filter specification sheets)
- 3. Sample tube type, (e.g., glass, teflon, stainless steel, etc.)
- 4. Probe cleaning method and solvent to be used, if applicable.
- 1. See attached sample train diagram.
- 2. Type or types of capture media: M1: N/A M2: N/A M306: 0.1N NaOH M4: Samples are condensed in H2O and adsorbed onto Silica Gel.
- 3. Sample tube type: M1: N/A M2: N/A M4: borosilicate glass or stainless steel with connecting borosilicate glassware.
- 4. Probe cleaning method and solvent to be used: M1: N/A M2: N/A M306: Probe liner is rinsed using 0.1N NaOH as the reagent. It is not necessary to brush the probe liner. If a probe brush is used it must be non-metallic. M4: N/A

#### G. Laboratory Analysis:

A description of the laboratory analysis methods to be used to determine the concentration of each pollutant.

M1: N/A M2: N/A M306: Analysis for total chrome by graphite furnace atomic absorption spectroscopy (GFAAS). M4:

A gas sample is extracted at a constant rate (or isokinetically in conjunction with other methods) from the source;

moisture is removed from the sample stream and determined either volumetrically or gravimetrically.

#### H. Description of Operations:

A description of any operation, process, or activity that could vent exhaust gases to the test stack. This shall include the description and feed rate of all materials capable of producing pollutant emissions used in each separate operation.

- Note 1: All testing shall be performed at maximum rate capacity as specified by the equipment manufacturer or at the maximum rate actually used in the emissions unit operation, whichever is greater, or at any other rate specified by the administrator.
- Note 2: If the emissions unit is not operated at maximum capacity, or as close as possible thereto, the emissions unit might be de-rated to that production capacity.
- Note 3: Production records and parametric monitoring records must be included in the final report.

The Hard Chrome Electroplating Tanks 1, 2B, and 2F are the only unit vented through the scrubber to the exhaust.

#### I. Stack and Vent Description:

A dimensional sketch or sketches showing the plan and elevation view of the entire ducting and stack arrangement. The sketch should include the relative position of all processes or operations venting to the stack or vent to be tested. It should also include the position of the ports relative to the nearest upstream and downstream gas flow disturbance or duct dimensional change. The sketches should include the relative position, type, and manufacturer's claimed efficiency of all gas cleaning equipment.

A cross sectional dimensional sketch of the stack or duct at the sampling ports, showing the position of sampling points. In case of a rectangular duct, show division of duct into equal areas.

Please see attached stack diagram.

#### J. Safety:

Describe all possible safety hazards including such items as the presence of toxic fumes, high noise levels, areas where eye protection is required, etc. Note: Conditions considered unsafe at the time of the test will cause postponement.

The Plant requires the use of safety glasses, safety shoes, hard hats, and hearing protection (in designated areas). At this time, and to the best of our belief and knowledge, there are no toxic fumes or other hazards expected to be on site at this facility that would cause you to formally prepare for your exposure to them. It is our recommendation however, to consult plant personnel regarding its safety policies before accessing the production areas on this site. Air Compliance Testing personnel will be required to wear safety shoes and safety glasses at all times while on site at the facility to comply with our own company policy.

#### K. Test Report:

The final test report must contain, as a minimum, the following information to be acceptable:

All raw data sheets, including strip charts where applicable

Process data

Results of audit samples

All lab analyses data

All calibration data

Complete chain-of-custody records for all samples removed from the facility for recovery and/or analysis All formulas used in calculating emission rates if different than specified in the applicable reference method An explanation of all disruptions encountered during the test period, (i.e., Meter box changes, process shutdowns, broken glassware, etc.)

Back-half analysis, if determining particulate emissions that are 10 microns in aerodynamic diameter or less

Note: In accordance with OAC 3745-15-04 the report must be submitted within 30 days of conducting the test. The final test report will comply with all requirements in this ITT.

#### L. <u>Test Postp</u>onement

It is understandable that a test will need to be postponed due to circumstances that would not allow representative conditions to be established, such as recent maintenance or modification, equipment failure, or the absence of key personnel. However, concern that a test will result in a determination of non-compliance is not a valid reason for postponement, and a facility decision to postpone without a valid reason may result in enforcement action against the facility.

# CLEVELAND DIVISION OF AIR QUALITY FULL COMPLIANCE EVALUATION

REVISED: 05/12/2006

FACILITY INFORMATION								
acility Identification Number:	acility, Identification Number: 13-18-00-5949							
Facility Name:	Goodrich Landir	Goodrich Landing Gear Division – Plating Operation						
Facility Address:	2800 East 33 rd Street, Cleveland, Ohio, 44115							
Facility County:	Cuyahoga							
Mailing Address:	2800 East 33 rd Street, Cleveland, Ohio, 44115							
Facility AFS Number (SCSC ID):	3903500554	343						
Facility SIC Code:	3471	NAICS Code:	332813					

	INSPECTION INFO	RMATION						
Date of Inspection:	1/25/2011	Announced:	Yes					
Facility Arrival Time:	12:30 pm	12:30 pm <b>Departure Time:</b> 2:30 pm						
Date of Previous Inspection:	8/25/2009	Announced:	Yes					
Responsible Official:	Tom Butorac, Plant M	anager						
Primary Facility Representative:	Stephanie Steinmetz, Environmental, Health, Safety Manager Jay Finegan, Environmental, Health, Safety Manager							
Representative Phone Number:	(216) 429-4423	Fax Number:	(216) 241-0577					
Representative Email:	jay.finegan@goodrich.com Stephanie.steinmetz@goodrich.com							
Web Address:	www.goodrich.com							
Confidential Information:	No							
Required Safety Equipment:	Safety Glasses, Steel	Toe Boots						

	FAC	ILITY TY	PE PER	MIT	AND PO	LLUTA	NTS		
Facility Type (G1-G4):	MegaSite	Title V	Major	Title	e V Area	FEP	TO SI	MTV-PTI	Minor/Other
Federal Facility Type:	NSPS	NESHAP	MACT	PS	D Emi	ssions (	Offset	SM-PTI	
Applicable MACT:	40 CFR 6	3 Subpart	N		Major o	Area	Source?	Area	_
Applicable MACT:	40 CFR 6	3 Subpart	Τ		Major o	Area	Source?	Major	
Pollutants Regulated:	PE Le	ad OC	vod	CO	$NO_X$	$SO_X$	HAPs	Air Tox	cics
List HAPs:	Chromiu	m, Trichior	oethylen	e					

	ATTAINMENT DESIGNATION						
PM ₁₀	PM ₁₀ PM _{2.5} SO ₂ Ozone (1hr) Ozone(8hr) CO NO _x						
Attainment	Non-Attainment	Attainment	AttaInment	Non-Attainment	Attainment	Attainment	

Inspected By: Bryan Sokolowski	Date Report Completed:	February 9, 2011
Signature of Inspector:	Date:	
Report Reviewed By:  Linda Kimmy, Field Enforcemen	Date:	

# CLEVELAND DIVISION OF AIR QUALITY FULL COMPLIANCE EVALUATION

REVISED: 05/12/2006

ChieEPA

#### **INSPECTION SUMMARY**

Goodrich Landing Gear Division – Plating Operation (Goodrich Landing Gear) performs chrome and nickel electroplating, and metal finishing for military and commercial landing gear.

On January 25, 2010, Cleveland Division of Air Quality (CDAQ) inspected Goodrich Landing Gear located at 2800 East 33rd Street, in Cleveland. Upon arrival CDAQ was greeted by Goodrich Landing Gear's Environmental Health and Safety Managers Stephanie Steinmetz and Jay Finegan. CDAQ performed a thorough walkthrough of the facility and verified all Emission Units (EUs). During the walkthrough CDAQ performed Method 9 – visible emission readings (Attachment #1) on EUs P002, and P003. CDAQ noticed no opacity violations during the tests. CDAQ also recorded the pressure drop of EU P002, and P003.

On September 24, 2010, Goodrich Landing Gear drained the solvent from EU L003: Open Top Tri-Chloroethylene Vapor Degeaser due to a leak. EU L003 has been out of operation since September 24, 2010. Goodrich Landing Gear plans on repairing and bringing EU L003 back into service. In the meantime Goodrich Landing Gear has used an alkaline cleaning dip tank for degreasing the parts.

EU P024 was incorrectly labeled in Stars2 and Anaximenes as 5 Grinders/Polishers. A Permit-to-Install (13-3417) was issued on August 17, 1998 for P024: Thermal Powder Coating System. EU P024 was never installed. CDAQ will shutdown EU P024, and assign the 5 Grinders/Polishers a EU ID number.

During the inspection CDAQ also verified the shutdown of several emission units.

Emission units Z002-Z005 will be renamed by Ynes Arocho due to the "Z" not being used anymore.

CDAQ is awaiting information on shot peen cabinets M111-M116. CDAQ wants to determine what EU ID number matches up with which company ID number.

Goodrich Landing Gear will receive a Letter of Warning for failing to measure the temperature of the primary condenser coil during the idling mode. Goodrich Landing Gear recording temperatures while the machine was in defrost mode. Temperature recording should only be taken during idling mode. This is in violation of Permitto-Install #13-04323, Monitoring and/or Record Keeping Requirements (3).

The following individuals wer	re present for the inspection:	
Jay Finegan	Env. Health, Safety Manager	Goodrich, Landing Gear Division
Stephanie Steinmetz	Env. Health, Safety Manager	Goodrich, Landing Gear Division
Sarah Buzas	Env. Compliance Specialist	Ohio EPA CDAQ
Ynes Arocho	Env. Compliance Specialist	Ohio EPA CDAQ
Bryan Sokolowski	Env. Enforcement Specialist	Ohio EPA CDAQ

ATTACHMENTS				
Attachment 1:	Method 9 Visible Emission Readings for EU P002, and P003			
Attachment 2:	2010 Monthly Inspections			
Attachment 3:	Weekly Freeboard Refrigeration Temperature Recordings			
Attachment 4:	2010 Annual Vapor Degreaser Solvent Consumption Report	-		
Attachment 5:	Preventative Maintenance Report			





Attachment 6:	L003: Vapor Degreaser Specs.			
Attachment 7:	Shot Peen Diagram	R	9	
Attachment 8:	Withdrawal Form	<del> </del>	ě	54V

FACILITY DETAIL	
Is the facility in compliance with the facility-wide operational, record keeping, and reporting requirements of permit terms and conditions?	No
For those facilities that have received a final Title V permit, was an Annual Certification of Compliance submitted as required by OAC 3745-77-03(C)(10) on or before April 30 th ?	Yes
Is the Annual Certification of Compliance correct?	Yes

# HISTORICAL ENFORCEMENT INFORMATION Any enforcement action taken against the company within the last 5 years? September 18, 2009, Goodrich Landing Gear received a Letter of Warning for failing to submit a quarterly deviation report. Letter of Warning follow-up letter was sent October 12, 2009.

CURRENT COMPLIANCE INFORMATION				
Are there any violations discovered?	Yes			
If violations were discovered, was the facility verbally warned?	No			
After inspection correspondence (NOV, IFL, Verbal Warning, etc.)?	Letter of Warning			
Goodrich Landing Gear has failed to measure the temperature of the primary				

EMISSIONS UNITS REQUIRING PERMIT(S) / NON-INSIGNIFICANT UNITS			
Emissions Unit: Description:			
P001	Hard Chrome Electroplating Tanks (Tanks 1, 2B, 2F, and 7 with scrubber)		
P002	Hard Chrome Electroplating Tanks (Tanks 8-11 with scrubber)		

INSIGNIFICANT EMISSIONS UNITS (TITLE V ONLY)				
Emissions Unit:	Description:	Reason:		
K001	Paint Spray Booth for micro-mask stop-off and touch-up (298 gallons of EN Mask Green Paint used in 2010 combined for both Paint Spray booths)	OAC Rule 3745-77-01(V)(3)		
P006	Wheelabrator Shot Peen with Panghorn Baghouse	OAC Rule 3745-77-01(V)(1)		
P008	Three Nickel Sulfamate Plating Tanks	OAC Rule 3745-77-01(V)(1)		
P009	Three Electroless Nickel Plating Tanks	OAC Rule 3745-77-01(V)(1)		
P011	Aluminum Oxide Abrasive Blast Cleaning	OAC Rule 3745-77-01(V)(3)		
P013	1.5 MMBTU/HR Lanley Embrittlement Relief Oven (Natural Gas Fired)	OAC Rule 3745-77-01(V)(1)		
P015	Pangborn Shot Peen Machine #2	OAC Rule 3745-77-01(V)(3)		

recording should only be taken during idling mode.

# CLEVELAND DIVISION OF AIR QUALITY FULL COMPLIANCE EVALUATION REVISED: 05/12/2006 CLEVELAND DIVISION OF AIR QUALITY CAPPENDIX N

INSIGNIFICANT EMISSIONS UNITS (TITLE V ONLY)			
Emissions Unit:	Description:	Reason:	
P016	Wheelabrator Shot Peen Cabinet #116	OAC Rule 3745-77-01(V)(3)	
P017	Shot-blast Cabinets #112 and #113	OAC Rule 3745-77-01(V)(3)	
P019	Abrasive Blast Cleaning using #80 AI02 Grit Blaster	OAC Rule 3745-77-01(V)(3)	
P021	TICAD Cadmium Plating Tank	OAC Rule 3745-77-01(V)(1)	
P022	Low Cadmium Plating Tank	OAC Rule 3745-77-01(V)(1)	
P023	Lead Melting Operation	OAC Rule 3745-77-01(V)(1)	
Z002 (Will be Renamed)	Peerless 0.63 MMBTU/HR Natural Gas Fired Boiler	OAC Rule 3745-77-01(V)(1)	
Z003 (Will be Renamed)	0.69 MMBTU/HR Natural Gas Fired Boiler for vapor degreaser	OAC Rule 3745-77-01(V)(1)	
Z004 (Will be Renamed)	0.019 MMBTU/HR Natural Gas Fired Boiler	OAC Rule 3745-77-01(V)(1)	
Z005 (Will be Renamed)	500-Gallon Trichloroethylene Storage Tank	OAC Rule 3745-77-01(V)(1)	
Unassigned	1.5 MMBTU/HR Lanley Embrittlement Relief Oven, Natural Gas Fired (new)	OAC Rule 3745-77-01(V)(1)	
Unassigned	5 Polishers/Grinders	OAC Rule 3745-77-01(V)(1)	
Unassigned	Paint Spray Booth for micro-mask stop-off and touch-up (298 gallons of EN Mask Green Paint used in 2010 combined for both Paint Spray booths)	OAC Rule 3745-77-01(V)(3)	
Unassigned	Small Parts Cleaner using Xylene (165 gallons used 2010)	OAC Rule 3745-77-01(V)(1)	
Unassigned	Shot Peen Cabinet #111, #114, #115	OAC Rule 3745-77-01	

NON-OPERATIONAL SOURCES		
Emissions Unit:	Description:	Last Operational Date:
L003	Open Top Vapor Degreaser using Trichloroethylene (TCE)	September 24, 2010
P020	Cadmium Rinse/Plating Tank	January 25, 2011

SHUTDOWN SOURCES			
Emissions Unit:	Description:	Shutdown Date:	
L002	Open Top Vapor Degreaser	2004	
P003	P003 Copper Plating Tank 2004		
P004 Copper Stripping Tank 2004		2004	
P007	Glass Bead Peening Cabinet 2000		
P018	Natural Gas Fired Embrittlement Oven	1994	
P024	Thermal Powder Coating System	Never Installed	
Z001	Natural Gas Fired Boiler January 25, 2011		

REVISED: 05/12/2006

EMISSIONS UNIT (EU) DETAIL		
L003	Open Top Vapor Degreaser using Trichloroethylene (TCE)	

<b>Applicable Restrictions/Limitations</b>	Restricted Category
OAC Rule 3745-31-05(A)(3)	Best Available Technology (BAT)
OAC Rule 3745-21-09(O)	Volatile Organic Compounds (VOCs)
40 CFR Part 63, Subpart T	Maximum Achievable Control Technology (MACT)

PERMIT STATUS				
PTI Number: 13-04323 Date PTI issued: 7/27/2004 Date PTI app. submitted: 2				
Installation: April 2004				
BAT: 14.2 TPY OC				
Date PTO issued: 7/31/2002 Date PTO expires: 7/31/2007 Date PTO app. submitted: 2/5/2007				

CONTROL EQUIPMENT		
Is Air Pollution Control Equipment (APCE) required?	No	
If YES, is the APCE required to be performance tested?	N/A	
Were the required APCE reports submitted?	N/A	
Are the required APCE reports adequate?	N/A	
List APCE: None		

COMPLIANCE D	ATA	
Does this EU comply with applicable Monitoring, Record Keeping, and Reporting requirements?	No	
Were VE Observations Performed? If not, why?	No, EU not in operation. EU has not operated since September 24, 2010.	
Has the source been modified?	No	
Is this emissions unit connected to other emissions units? If yes list EUs?	No	
List process records required for review:	Records Required for Review:  1. Monthly Hoist Speed Monitoring (Attachment #2)  2. Weekly Freeboard Refrigeration Temperature Recordings (Attachment #3)  3. Wind Speed Records (Attachment #2)  4. Solvent Consumption (Attachment #4)  5. Lid Inspection (Attachment #2)	
Monitored Operating Parameter (i.e. pressure drop, temperature, pH)	None	
Were the required CEM/COM/CAM reports submitted?	N/A	
Are the required CEM/COM/CAM reports adequate?	N/A	

COMPLIANCE DATA			
Were the required deviation reports submitted?	Yes		
Are the required deviation reports adequate?	Yes		
Were any other required reports submitted?	Yes		
Are any other required reports adequate?	Yes		
List any other reports required:	Reports required for review:  1. Quarterly Deviation Report 2. Semiannual Deviation Report 3. TV Annual Compliance Certification 4. Annual Vapor Degreaser Report		

EMISSIONS ESTIMATES					
Category Uncontrolled Actual Allowable Potential to					
OC	8.8 TPY*	8.8 TPY*	14.2 TPY	14.2 TPY	
OC	0.022 lb/hr per ft ² **	0.022 lb/hr per ft ² **	0.045 lb/hr per ft ²	0.045 lb/hr per ft ²	

Calculations / Equ	jations:			
N/A				
Circum		The same of the sa		-

* From Annual Vapor Degreaser Report (Attachment #4)
**Emission Test performed April 25-26, 2005

COMPLIANCE EVALUATION		
Compliance Determination:	Violation discovered, Goodrich Landing Gear has failed to measure the temperature of the primary condenser coil during the idling mode. Goodrich Landing Gear recording temperatures while the machine was in defrost mode. Temperature recording should only be taken during idling mode.	
Comments:	EU L003 was not in operation at time of inspection. L003 sprang a leak in September 2010. The EU was drained and has not operated since September 24, 2010. Goodrich plans on repairing L003.	

Inspector: Bryan Sokolowski	Date: February 9, 2011
Reviewer:	Date:

EMISSIONS UNIT (EU) DETAIL		
P001	Hard Chrome Electroplating Tanks (Tanks 1, 2B, 2F and, 7 with scrubber)	

Applicable Restrictions/Limitations	Restricted Category
OAC Rule 3745-17-07(A)(1)	Visible Emissions (VE)
OAC Rule 3745-17-11(B)	Particulate Emissions (PE)
40 CFR Part 63 Subpart N	MACT

PERMIT STATUS				
<b>PTI Number:</b> 13-712	<b>Date PTI Issued:</b> 1/29/1981	<b>Date PTI App Submitted:</b> 6/3/1980		
Installation Date: 1980		<b>Modification Date: 8/18/1992</b>		
BAT: N/A				
<b>Date PTO Issued:</b> 7/31/2002	Date PTO Expires: 7/31/2007	Date PTO App Submitted: 2/5/2007		

CONTROL EQUIPMENT	144 200
Is Air Pollution Control Equipment (APCE) required?	Yes
If YES, is the APCE required to be performance tested?	
Were the required APCE reports submitted?	Yes
Are the required APCE reports adequate?	Yes
List APCE: Primary: Composite Mesh-Pad Filter System Secondary: Mist	Eliminator

COMPLIANCE DA	ATA
Does this EU comply with applicable Monitoring, Record Keeping, and Reporting requirements?	Yes
Were VE Observations Performed? If not, why?	Yes (Attachment #1)
Has the source been modified?	No
Is this emissions unit connected to other emissions units? If yes list EUs?	No
List process records required for review:	<ol> <li>Preventative Maintenance Report         (Attachment #5)</li> <li>Daily Pressure Drop Readings         (Observed checklist during inspection)</li> </ol>
Monitored Operating Parameter (i.e. pressure drop, temperature, pH)	Pressure Drop
Were the required CEM/COM/CAM reports submitted?	N/A
Are the required CEM/COM/CAM reports adequate?	N/A
Were the required deviation reports submitted?	Yes
Are the required deviation reports adequate?	Yes
Were any other required reports submitted?	Yes
Are any other required reports adequate?	Yes
List any other reports required:	Reports required for review:

COMPLIANCE DATA		
1.	Quarterly Deviation Report	
2.	Semiannual Deviation Report	
3.	TV Annual Compliance Certification	

EMISSIONS ESTIMATES				
Category	Uncontrolled	Actual	Allowable	Potential to Emit
Chromium (as mist)	0.0020 mg/dscm*	0.0020 mg/dscm*	0.015 mg/dscm	0.015 mg/dscm

OTHER LIMITATIONS:				
Category	Actual	Allowable		
Visible Emissions (Opacity)	0% (Attachment #1)	20% opacity, as a 6-minute average		
Pressure Drop (Composite Mesh-Pad System)	2.7 inches of H ₂ O	+/- 1 of 2.3 inches of H ₂ O		

Givens:	
*September 27, 2007 Stack Test	

COMPLIANCE EVALUATION	
Compliance Determination:	No Violations Discovered
Comments:	None

Inspector: <u>Brvan Sokolowski</u>	Date: February 9, 2011

Reviewer: _____ Date: ____

EMISSIONS UNIT (EU) DETAIL		
P002	Hard Chrome Electroplating Tanks (Tanks 8-11 with scrubber)	

<b>Applicable Restrictions/Limitations</b>	Restricted Category
OAC Rule 3745-17-07(A)(1)	VE
OAC Rule 3745-17-11(B)	PE
40 CFR Part 63 Subpart N	MACT

	PERMIT STATUS	
PTI Number: 13-712	<b>Date PTI Issued</b> : 1/29/1981	<b>Date PTI App Submitted:</b> 6/3/1980
Installation Date: 1980		Modification Date: 8/18/1992
BAT: N/A		985
<b>Date PTO Issued:</b> 7/31/2002	Date PTO Expires: 7/31/2007	Date PTO App Submitted: 2/5/2007

CONTROL EQUIPMENT	
Is Air Pollution Control Equipment (APCE) required?	Yes
If YES, is the APCE required to be performance tested?	Yes
Were the required APCE reports submitted?	Yes
Are the required APCE reports adequate?	Yes
List APCE: Primary: Composite Mesh-Pad Filter System Secondary: Mist	Eliminator

COMPLIANCE DA	ATA
Does this EU comply with applicable Monitoring, Record Keeping, and Reporting requirements?	Yes
Were VE Observations Performed? If not, why?	Yes (Attachment #1)
Has the source been modified?	No
Is this emissions unit connected to other emissions units? If yes list EUs?	No
List process records required for review:	<ol> <li>Preventative Maintenance Report         (Attachment #5)</li> <li>Daily Pressure Drop Readings         (Observed checklist during inspection)</li> </ol>
Monitored Operating Parameter (i.e. pressure drop, temperature, pH)	Pressure Drop
Were the required CEM/COM/CAM reports submitted?	N/A
Are the required CEM/COM/CAM reports adequate?	N/A
Were the required deviation reportssubmitted?	Yes
Are the required deviation reports adequate?	Yes
Were any other required reports submitted?	Yes
Are any other required reports adequate?	Yes

COM	IPLIANCE DATA
List any other reports required:	Reports required for review:
	<ol> <li>Quarterly Deviation Report</li> <li>Semiannual Deviation Report</li> </ol>
	3. TV Annual Compliance Certification

EMISSIONS ESTIMATES				
Category	Uncontrolled	Actual	Allowable	Potential to Emit
Chromium (as mist)	0.0024 mg/dscm*	0.0024 mg/dscm*	0.015 mg/dscm	0.015 mg/dscm

OTHER LIMITATIONS:			
Category	Actual	Allowable	
Visible Emissions (Opacity)	0% (Attachment #1)	20% opacity, as a 6-minute average	
Pressure Drop (Composite Mesh-Pad System)	2.6 inches of H₂O	+/- 1 of 2.3 inches of H ₂ O	

Givens:	
*September 27, 2007 Stack Test	

COMPLIANCE EVALUATION	
<b>Compliance Determination:</b>	No Violations Discovered
Comments:	None

Inspector: <u>Bryan Sokolowski</u>	Date: February 9, 2011
Reviewer:	Date:

Cleveland, OH 44115

2011 Semi-annual Deviation/Compliance Report #2 Halogenated Solvent Cleaning Machine (EU ID: L003)

Facility ID: 1318005949

Reporting Period:

July 1, 2011 - December 31, 2011

#### **Description of Process**

Goodrich Plating Operations, located at 2800 East 33rd Street in Cleveland, Ohio, operates a vapor degreaser using Trichloroethylene. Landing gear parts are placed into the degreaser for cleaning.

#### Recordkeeping/Reporting Requirements for Maintaining Compliance

	RECORDKEEPING REQUIREMENTS			
ID	Brief Description	Frequency	Comments	
1	Emissions Control	Continuous	<ul> <li>Results of control device monitoring;</li> <li>Information on actions taken to comply with 40 CFR 63.463 (monitoring of control devices and batch vapor or in-line solvent cleaning machines);</li> </ul>	
2	Initial Performance	One time	<ul> <li>Maintain records for an initial monitoring test of wind speed and room parameters;</li> <li>Maintain owner's manuals or written maintenance and operating procedures for the solvent cleaning machine and control equipment;</li> <li>Record the date of installation for the solvent cleaning machine and all of its control devices;</li> <li>Records of the halogenated HAP solvent content for the solvent used in the solvent cleaning machine.</li> </ul>	
3	Freeboard Refrigeration	Weekly	Records for the monitoring of the freeboard refrigeration device;	
4	Operating Environment	Quarterly	Monitor and record room wind speed;	

	REPORTING REQUIREMENTS			
ID	Brief Description	Frequency	Comments	
1	Initial Notice	One time	Initial statement of compliance.	
2	Deviation Reports – Operational Requirements	Quarterly	<ul> <li>Exceedance reports for the condenser coil temperature;</li> <li>Deviation reports that document violations of emission limitations, operational restrictions, and control device operating parameter limitations.</li> </ul>	
3	Deviation Reports – Recordkeeping/Reporting	Semi- annually	Deviation reports that document violations of federally enforceable monitoring, record keeping, and reporting requirements;	
4	Compliance Certification	Annually	Annual report with certification once per year.	

#### **Idling Emission Test**

A new vapor degreaser was installed in January, 2005. The facility conducted an idling emission test and submitted an initial statement of compliance report in May, 2005.

Facility ID: 1318005949

2011 Semi-annual Deviation/Compliance Report #2 Halogenated Solvent Cleaning Machine (EU ID: L003)

Reporting Period:

July 1, 2011 - December 31, 2011

#### Description of Changes in System since last Report

The vapor degreaser was placed out of operation on September 24, 2010, and drained of TCE. Repairs to the system began in Q2, 2011, and were completed in Q3, 2011. Upon completion of the repairs on September 16. 2011, the vapor degreaser was physically capable of being operated. However, we were required to prepare a series of test panels for customer approval before we could release the system for use on actual product. Consequently, the system was not officially released until 11/15/11. The new electronic data-logging system for capturing temperature is installed, but not yet wired into the system.

#### **Deviations during Reporting Period**;

The following deviations from requirements (see table above) occurred during this reporting period:

ltem	Date	<b>Deviation</b>
1	Oct, 2011	Hoist speed, which is required to be measured monthly, was not measured (two hoists)

Comments and corrections:

Item	Comments and Corrections
Hem	Comments and Corrections
i	This measurement was simply overlooked. First, the two hoists have been electromechanically
	modified so that they are incapable of exceeding 11 fpm. Second, all measurements before and after
	the missing observations confirm that the hoists operate around 8.2 fpm, much less than the maximum
	value of 11 fpm.

## 2011 Semi-annual Deviation/Compliance Report #2 Hard Chromium Electroplating Operations

Reporting Period:

July 1, 2011- December 31, 2011

#### **Description of Process**

Goodrich Corporation Plating Operations operates two (2) chrome electro-plating lines. Chrome and particulate emissions are controlled by two composite mesh-pad systems. The first chrome plating line has five (5) leads or hoods which draw emissions from four (4) hard chrome plating tanks and three (3) strip tanks with emissions controlled by the South Scrubber System. The second chrome plating line encompasses four chrome plating tanks controlled by the North Scrubber System. Goodrich uses both of these lines to conduct chrome plating operations for manufactured landing gears.

#### Record Keeping/Reporting Requirements for Maintaining Compliance

	RECORDKEEPING REQUIREMENTS			
ID	Brief Description	Frequency	Comments	
1	Emissions Control	Continuous	<ul> <li>Maintain inspection records for add-on pollution control devices (if any);</li> <li>Maintain records of all maintenance performed on the emissions unit;</li> <li>Maintain records of all malfunctions and actions taken to correct malfunctions;</li> <li>Maintain records (i.e. checklists) that demonstrate compliance with the O&amp;M plan;</li> <li>Maintain records of the results of all performance tests, including conductions of the tests;</li> <li>Maintain records of monitoring data that are used to determine compliance with the standards within the permit;</li> <li>Identify all periods of excess emissions;</li> </ul>	
2	Pressure Drop	Daily	Record the pressure drop across the composite mesh-pad system.	

	REPORTING REQUIREMENTS			
ID	Brief Description	Frequency	Comments	
1	Notification of Reconstruction	Continuous	Notification of reconstruction with required information any time a reconstruction will occur.	
2	Initial Notifications	On-Time	<ul> <li>Initial Notification report;</li> <li>Initial Notification of Compliance Status.</li> </ul>	
3	Deviation Reports – Operational	Quarterly	<ul> <li>The ongoing compliance status report;</li> <li>Deviation reports that document violations of emission limitations, operational restrictions, and control device operating parameter limitations;</li> </ul>	
4	Deviation Reports – Recordkeeping/Reporting	Semi-annual	Deviation reports that document violations of federally enforceable monitoring, record keeping, and reporting requirements;	
5	Certificate of Compliance	Annual	Certificate of Compliance	

**Goodrich Corporation** Landing Gear Plating Operation 2800 East 33rd Street

Cleveland, OH 44115

#### 2011 Semi-annual Deviation/Compliance Report #2 Hard Chromium Electroplating Operations

Facility ID: 1318005949

Reporting Period:

July 1, 2011- December 31, 2011

#### Description of Changes in System since last Report

While there have been no changes to the north or south scrubber units as of the previous report, all but one of the hard chrome plating tanks exhausted by the south scrubber unit have been taken out of service. Two of the plating tanks have been converted to strip tanks; the other two plating tanks are currently empty. We are investigating reducting the two scrubber units so that either of them will support all remaining hard chrome plating tanks. This parallel structure would allow us to generally shut down one of the scrubber units, but leave us with a back-up exhaust system should we experience system failure of the then operating system or need to conduct repairs or maintenance.

#### **Deviations during Reporting Period**;

The following deviations from requirements (see table above) occurred during this reporting period:

Item	Date	EU ID	Deviation
			NO DEVIATIONS REPORTED

Comments and corrections:

Item	Comments and Corrections

Facility ID: 1318005949

## 2011 Quarterly Deviation/Exceedance Report (Q4) Halogenated Solvent Cleaning Machine (EU ID: L003)

Reporting Period:

October 1, 2011 – December 31, 2011

Time of System:

24 hours/7 days

#### **Description of Process**

Goodrich Plating Operations, located at 2800 East 33rd Street in Cleveland, Ohio, operates a vapor degreaser using Trichloroethylene. Landing gear parts are placed into the degreaser for cleaning.

#### Control Equipment for Maintaining Compliance

The following as prescribed in 40 CFR 63.468(d):

Control Equipment	Frequency	Parameters
[1] Electric Cover	Monthly	Opens/closes properly & is free from cracks, holes and defects.
[2] Hoist	Quarterly	The hoist is mechanically incapable of speeds greater than 11 ft/min.
[3] Environment	Monthly	Ensure wind speed is no greater than 0 (zero) ft/min.
[4] Freeboard Refrigeration Device	Weekly	Temperature is required to be equal or less than minus 5 degrees Fahrenheit.

#### **Idling Emission Test**

A new vapor degreaser was installed in January, 2005. The facility conducted an idling emission test and submitted an initial statement of compliance report in May, 2005.

#### Description of Changes in System since last Report

The vapor degreaser was placed out of operation on September 24, 2010, and drained of TCE. Repairs to the system began in Q2, 2011, and were completed in Q3, 2011. Upon completion of the repairs on September 16. 2011, the vapor degreaser was physically capable of being operated. However, we were required to prepare a series of test panels for customer approval before we could release the system for use on actual product. Consequently, the system was not officially released until 11/15/11. The new electronic data-logging system for capturing temperature is installed, but not yet wired into the system.

#### Exceedances and Deviations during Reporting Period;

The following observations that exceed or deviate from permit terms and conditions were recorded during this reporting period:

Item	Date	Parameter	Requirement	Observation
		NO DEVIATIONS REPORTED		

Comments and corrections:

Comments	_ una corrections.
Item	Comments and Corrections
1	

### 2011 Quarterly Deviation/Exceedance Report (Q4) Hard Chromium Electroplating Operations

Reporting Period:

October 1, 2011 - December 31, 2011

Time of System:

24 hours/7 days

#### **Description of Process**

Goodrich Corporation Plating Operations operates two (2) chrome electro-plating lines. Chrome and particulate emissions are controlled by two composite mesh-pad systems. The first chrome plating line has five (5) leads or hoods which draw emissions from four (4) hard chrome plating tanks and three (3) strip tanks with emissions controlled by the South Scrubber System. The second chrome plating line encompasses four chrome plating tanks controlled by the North Scrubber System. Goodrich uses both of these lines to conduct chrome plating operations for manufactured landing gears.

#### **Operating Parameters for Compliance**

Pressure drop across the systems will be monitored once each day that any effected source is operating. Pressure drop will be maintained within +/- one inch of water column as prescribed in 40 CFR 63.344(C)(l)(ii).

	South Scrubber (Line #1)	North Scrubber (Line #2)
Emission Limitations	0.015 mg/dscm	0.015 mg/dscm
Pressure Drop Ranges for Compliance (+/- 1 in-H ₂ 0)	2.3 (in-H ₂ 0)	2.3 (in-H ₂ 0)

#### Operating Parameters for Excess Emission Releases

	South Scrubber	North Scrubber
Total Duration of Excess Emissions:	(Line #1)	(Line #2)
[1] As a % of time within the period	<b>-</b> 0-	-0-
[2] Due to Process Upsets	-0-	-0-
[3] Due to Control Equipment Malfunctions	-0-	-0-
[4] Due to other known causes	-0-	-0-
[5] Due to other unknown causes	-0-	-0-

#### **Description of Changes in System Since last Report**

There have been no changes to the north or south scrubber units as of the previous report.

#### Facility ID: 1318005949

## 2011 Quarterly Deviation/Exceedance Report (Q4) Hard Chromium Electroplating Operations

Reporting Period:	October 1, 2011 – December 31, 2011	Time of System:	24 hours/7 days
-------------------	-------------------------------------	-----------------	-----------------

#### Exceedances and Deviations during Reporting Period;

The following observations that exceed or deviate from permit terms and conditions were recorded during this reporting period:

ltem	Date	Parameter	Requirement	Observation
		NO DEVIATIONS REPORTED		

#### Comments and corrections:

Item	Comments and Corrections

Pressure at location Chrome North Scrubber is 2.18 inch of 10/1/11 4:00:48 AM water 10/1/11 5:30:48 AM Pressure at location Chrome South Scrubber is 2.64 inch of water Pressure at location Chrome North Scrubber is 2.26 inch of 10/1/11 9:00:21 AM water Pressure at location Chrome South Scrubber is 3.08 inch of 10/1/11 11:15:21 AM water 10/1/11 1:30:21 PM Pressure at location Chrome North Scrubber is 2.29 inch of water 10/1/11 3:45:20 PM Pressure at location Chrome South Scrubber is 3.07 inch of water 10/1/11 6:00:20 PM Pressure at location Chrome North Scrubber is 2.21 inch of water Pressure at location Chrome South Scrubber is 2.98 inch of 10/1/11 8:30:19 PM water Pressure at location Chrome North Scrubber is 2.22 inch of 10/1/11 11:00:19 PM water 10/2/11 4:00:18 AM Pressure at location Chrome North Scrubber is 2.27 inch of water 10/2/11 5:30:18 AM Pressure at location Chrome South Scrubber is 2.90 inch of water 10/2/11 9:00:17 AM Pressure at location Chrome North Scrubber is 2.27 inch of water 10/2/11 11:15:17 AM Pressure at location Chrome South Scrubber is 2.92 inch of water Pressure at location Chrome North Scrubber is 2.31 inch of 10/2/11 1:30:16 PM water Pressure at location Chrome South Scrubber is 2.95 inch of 10/2/11 3:45:16 PM water 10/2/11 6:00:16 PM Pressure at location Chrome North Scrubber is 2.26 inch of water 10/2/11 8:30:15 PM Pressure at location Chrome South Scrubber is 3.02 inch of water 10/2/11 11:00:15 PM Pressure at location Chrome North Scrubber is 2.04 inch of water 10/3/11 4:00:14 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/3/11 5:30:14 AM Pressure at location Chrome South Scrubber is 2.95 inch of water Pressure at location Chrome North Scrubber is 2.20 inch of 10/3/11 9:00:13 AM water 10/3/11 11:15:13 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/3/11 1:30:13 PM Pressure at location Chrome North Scrubber is 2.19 inch of water Pressure at location Chrome South Scrubber is 2.90 inch of 10/3/11 3:45:12 PM water Pressure at location Chrome North Scrubber is 2.20 inch of 10/3/11 6:00:12 PM water 10/3/11 8:30:12 PM Pressure at location Chrome South Scrubber is 3.17 inch of water 10/3/11 11:00:11 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/4/11 4:00:10 AM Pressure at location Chrome North Scrubber is 2.23 inch of water 10/4/11 5:30:10 AM Pressure at location Chrome South Scrubber is 2.79 inch of water Pressure at location Chrome North Scrubber is 2.06 inch of 10/4/11 9:00:10 AM water 10/4/11 11:15:09 AM Pressure at location Chrome South Scrubber is 2.98 inch of water 10/4/11 1:30:09 PM Pressure at location Chrome North Scrubber is 2.20 inch of Page 1

	2011-Q4Log.txt
water 10/4/11 3:45:09 PM	Pressure at location Chrome South Scrubber is 2.97 inch of
water 10/4/11 6:00:08 PM	Pressure at location Chrome North Scrubber is 2.25 inch of
water 10/4/11 8:30:08 PM	Pressure at location Chrome South Scrubber is 2.99 inch of
water 10/4/11 11:00:07 PM	Pressure at location Chrome North Scrubber is 2.28 inch of
water 10/5/11 4:00:07 AM	Pressure at location Chrome North Scrubber is 2.38 inch of
water 10/5/11 5:30:07 AM	Pressure at location Chrome South Scrubber is 2.98 inch of
water 10/5/11 9:00:06 AM	Pressure at location Chrome North Scrubber is 2.28 inch of
water 10/5/11 11:15:06 AM	Pressure at location Chrome South Scrubber is 2.79 inch of
water 10/5/11 1:30:05 PM	Pressure at location Chrome North Scrubber is 2.22 inch of
water 10/5/11 3:45:05 PM	Pressure at location Chrome South Scrubber is 2.91 inch of
water 10/5/11 6:00:04 PM	Pressure at location Chrome North Scrubber is 2.09 inch of
water 10/5/11 8:30:04 PM	Pressure at location Chrome South Scrubber is 3.10 inch of
water 10/5/11 11:00:03 PM	Pressure at location Chrome North Scrubber is 2.28 inch of
water 10/6/11 4:00:03 AM	Pressure at location Chrome North Scrubber is 2.28 inch of
water 10/6/11 5:30:02 AM	Pressure at location Chrome South Scrubber is 2.89 inch of
water 10/6/11 9:00:02 AM	Pressure at location Chrome North Scrubber is 2.21 inch of
water 10/6/11 11:15:01 AM	Pressure at location Chrome South Scrubber is 2.91 inch of
water 10/6/11 1:30:01 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 10/6/11 3:45:01 PM	Pressure at location Chrome South Scrubber is 2.96 inch of
water 10/6/11 6:00:00 PM	Pressure at location Chrome North Scrubber is 2.20 inch of
water 10/6/11 8:30:00 PM	Pressure at location Chrome South Scrubber is 3.07 inch of
water 10/6/11 11:00:59 PM	Pressure at location Chrome North Scrubber is 2.33 inch of
water 10/7/11 4:00:59 AM	Pressure at location Chrome North Scrubber is 2.42 inch of
water 10/7/11 5:30:58 AM	Pressure at location Chrome South Scrubber is 3.09 inch of
water 10/7/11 9:00:58 AM	Pressure at location Chrome North Scrubber is 2.15 inch of
water 10/7/11 11:15:57 AM	Pressure at location Chrome South Scrubber is 2.80 inch of
water	
10/7/11 1:30:57 PM water	Pressure at location Chrome North Scrubber is 2.26 inch of
10/7/11 3:45:57 PM water	Pressure at location Chrome South Scrubber is 2.89 inch of
10/7/11 6:00:56 PM water	Pressure at location Chrome North Scrubber is 2.21 inch of
10/7/11 8:30:56 PM water	Pressure at location Chrome South Scrubber is 2.99 inch of
10/7/11 11:00:55 PM water	Pressure at location Chrome North Scrubber is 2.44 inch of
wa cci	Page 2

Pressure at location Chrome North Scrubber is 2.37 inch of 10/8/11 4:00:54 AM water 10/8/11 5:30:54 AM Pressure at location Chrome South Scrubber is 2.94 inch of water Pressure at location Chrome North Scrubber is 2.35 inch of 10/8/11 9:00:54 AM water 10/8/11 11:15:53 AM Pressure at location Chrome South Scrubber is 2.93 inch of water Pressure at location Chrome North Scrubber is 2.22 inch of 10/8/11 1:30:53 PM water Pressure at location Chrome South Scrubber is 2.80 inch of 10/8/11 3:45:53 PM water 10/8/11 6:00:52 PM Pressure at location Chrome North Scrubber is 2.13 inch of water 10/8/11 8:30:52 PM Pressure at location Chrome South Scrubber is 2.89 inch of water 10/8/11 11:00:51 PM Pressure at location Chrome North Scrubber is 2.31 inch of water 10/9/11 4:00:50 AM Pressure at location Chrome North Scrubber is 2.27 inch of water 10/9/11 5:30:50 AM Pressure at location Chrome South Scrubber is 2.89 inch of water Pressure at location Chrome North Scrubber is 2.26 inch of 10/9/11 9:00:49 AM water Pressure at location Chrome South Scrubber is 2.93 inch of 10/9/11 11:15:49 AM water 10/9/11 1:30:48 PM Pressure at location Chrome North Scrubber is 2.27 inch of water Pressure at location Chrome South Scrubber is 2.96 inch of 10/9/11 3:45:48 PM water 10/9/11 6:00:47 PM Pressure at location Chrome North Scrubber is 2.25 inch of water Pressure at location Chrome South Scrubber is 2.89 inch of 10/9/11 8:30:47 PM water 10/9/11 11:00:47 PM Pressure at location Chrome North Scrubber is 2.15 inch of water Pressure at location Chrome North Scrubber is 2.22 inch of 10/10/11 4:00:46 AM water 10/10/11 5:30:45 AM Pressure at location Chrome South Scrubber is 2.93 inch of water Pressure at location Chrome North Scrubber is 2.28 inch of 10/10/11 9:00:45 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/10/11 11:15:44 AM water 10/10/11 1:30:44 PM Pressure at location Chrome North Scrubber is 2.35 inch of water Pressure at location Chrome South Scrubber is 2.93 inch of 10/10/11 3:45:44 PM water 10/10/11 6:00:43 PM Pressure at location Chrome North Scrubber is 2.35 inch of water Pressure at location Chrome South Scrubber is 3.06 inch of 10/10/11 8:30:43 PM water 10/10/11 11:00:43 PM Pressure at location Chrome North Scrubber is 2.22 inch of water Pressure at location Chrome North Scrubber is 2.29 inch of 10/11/11 4:00:42 AM water Pressure at location Chrome South Scrubber is 2.90 inch of 10/11/11 5:30:42 AM water 10/11/11 9:00:41 AM Pressure at location Chrome North Scrubber is 2.22 inch of water Pressure at location Chrome South Scrubber is 2.88 inch of 10/11/11 11:15:41 AM water Pressure at location Chrome North Scrubber is 2.20 inch of 10/11/11 1:30:40 PM Page 3

water 10/11/11 3:45:40 PM Pressure at location Chrome South Scrubber is 2.70 inch of water Pressure at location Chrome North Scrubber is 2.25 inch of 10/11/11 6:00:39 PM water 10/11/11 8:30:39 PM Pressure at location Chrome South Scrubber is 2.79 inch of water Pressure at location Chrome North Scrubber is 2.17 inch of 10/11/11 11:00:38 PM water Pressure at location Chrome North Scrubber is 2.19 inch of 10/12/11 4:00:38 AM water 10/12/11 5:30:37 AM Pressure at location Chrome South Scrubber is 2.57 inch of water 10/12/11 9:00:37 AM Pressure at location Chrome North Scrubber is 2.22 inch of water 10/12/11 11:15:37 AM Pressure at location Chrome South Scrubber is 2.91 inch of water 10/12/11 1:30:36 PM Pressure at location Chrome North Scrubber is 2.40 inch of water 10/12/11 3:45:36 PM Pressure at location Chrome South Scrubber is 2.97 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/13/11 4:00:38 AM water 10/13/11 5:30:38 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/13/11 9:00:38 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/13/11 11:15:37 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/13/11 1:30:37 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/13/11 3:45:36 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/13/11 6:00:36 PM water 10/13/11 8:30:36 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/13/11 11:00:35 PM water 10/14/11 4:00:34 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/14/11 5:30:34 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/14/11 9:00:33 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/14/11 11:15:33 AM water 10/14/11 1:30:33 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/14/11 3:45:32 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/14/11 6:00:32 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/14/11 8:30:31 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/14/11 11:00:31 PM water 10/15/11 4:00:30 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/15/11 5:30:30 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/15/11 9:00:29 AM Pressure at location Chrome North Scrubber is 2.18 inch of water

Pressure at location Chrome South Scrubber is 2.87 inch of 10/15/11 11:15:29 AM water 10/15/11 1:30:28 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/15/11 3:45:28 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/15/11 6:00:28 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/15/11 8:30:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/15/11 11:00:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/16/11 4:00:26 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/16/11 5:30:25 AM water 10/16/11 9:00:25 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/16/11 11:15:24 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/16/11 1:30:24 PM water 10/16/11 3:45:23 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/16/11 6:00:23 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/16/11 8:30:23 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/16/11 11:00:22 PM water 10/17/11 4:00:21 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/17/11 5:30:21 AM water 10/17/11 9:00:20 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/17/11 11:15:20 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/17/11 1:30:20 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/17/11 3:45:19 PM water 10/17/11 6:00:19 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/17/11 8:30:18 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/17/11 11:00:18 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/18/11 4:00:17 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/18/11 5:30:17 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/18/11 9:00:16 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/18/11 11:15:16 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/18/11 1:30:15 PM water 10/18/11 3:45:15 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/18/11 6:00:14 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/18/11 8:30:14 PM Page 5

water 10/18/11 11:00:13 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/19/11 4:00:12 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/19/11 5:30:12 AM water 10/19/11 9:00:12 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/19/11 11:15:11 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/19/11 1:30:11 PM water 10/19/11 3:45:11 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/19/11 6:00:10 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/19/11 8:30:10 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/19/11 11:00:09 PM water 10/20/11 4:00:08 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/20/11 5:30:08 AM water 10/20/11 9:00:07 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/20/11 11:15:07 AM water 10/20/11 1:30:07 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/20/11 3:45:06 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/20/11 6:00:06 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/20/11 8:30:06 PM water 10/20/11 11:00:05 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/21/11 4:00:04 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/21/11 5:30:04 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/21/11 9:00:03 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/21/11 11:15:03 AM water 10/21/11 1:30:03 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/21/11 3:45:02 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/21/11 6:00:02 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/21/11 8:30:02 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/21/11 11:00:01 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/22/11 4:00:01 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/22/11 5:30:00 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/22/11 9:00:00 AM water

Pressure at location Chrome South Scrubber is 2.87 inch of 10/22/11 11:15:00 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/22/11 1:30:59 PM water 10/22/11 3:45:59 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/22/11 6:00:58 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/22/11 8:30:58 PM water 10/22/11 11:00:58 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/23/11 4:00:57 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/23/11 5:30:57 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/23/11 9:00:56 AM water 10/23/11 11:15:56 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/23/11 1:30:55 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/23/11 3:45:55 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/23/11 6:00:55 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/23/11 8:30:54 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/23/11 11:00:54 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/24/11 4:00:53 AM water 10/24/11 5:30:53 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/24/11 9:00:52 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/24/11 11:15:52 AM water 10/24/11 1:30:51 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/24/11 3:45:51 PM water 10/24/11 6:00:50 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/24/11 8:30:50 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/24/11 11:00:49 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/25/11 4:00:48 AM water 10/25/11 5:30:48 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/25/11 9:00:48 AM water 10/25/11 11:15:47 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/25/11 1:30:47 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/25/11 3:45:46 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/25/11 6:00:46 PM water 10/25/11 8:30:46 PM Pressure at location Chrome South Scrubber is 2.87 inch of Page 7

water 10/25/11 11:00:45 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/26/11 4:00:44 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/26/11 5:30:44 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/26/11 9:00:44 AM water 10/26/11 11:15:43 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/26/11 1:30:43 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/26/11 3:45:43 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/26/11 6:00:42 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/26/11 8:30:42 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/26/11 11:00:42 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/27/11 4:00:41 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/27/11 5:30:40 AM water 10/27/11 9:00:40 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/27/11 11:15:40 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/27/11 1:30:39 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/27/11 3:45:39 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/27/11 6:00:38 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/27/11 8:30:38 PM water 10/27/11 11:00:37 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/28/11 4:00:37 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/28/11 5:30:36 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/28/11 9:00:36 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/28/11 11:15:35 AM water 10/28/11 1:30:35 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/28/11 3:45:35 PM water 10/28/11 6:00:34 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/28/11 8:30:34 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/28/11 11:00:33 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/29/11 4:00:33 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/29/11 5:30:32 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/29/11 9:00:32 AM Pressure at location Chrome North Scrubber is 2.18 inch of water

Pressure at location Chrome South Scrubber is 2.87 inch of 10/29/11 11:15:31 AM water 10/29/11 1:30:31 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/29/11 3:45:31 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/29/11 6:00:30 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/29/11 8:30:30 PM water 10/29/11 11:00:29 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/30/11 4:00:29 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/30/11 5:30:28 AM water 10/30/11 9:00:28 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/30/11 11:15:27 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/30/11 1:30:27 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/30/11 3:45:26 PM water 10/30/11 6:00:26 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 10/30/11 8:30:25 PM water 10/30/11 11:00:25 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/31/11 4:00:24 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/31/11 5:30:24 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/31/11 9:00:23 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/31/11 11:15:23 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 10/31/11 1:30:22 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 10/31/11 3:45:22 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 10/31/11 6:00:22 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 10/31/11 8:30:21 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 10/31/11 11:00:21 PM water 11/1/11 4:00:20 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/1/11 5:30:20 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/1/11 9:00:19 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/1/11 11:15:19 AM water 11/1/11 1:30:18 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/1/11 3:45:18 PM water 11/1/11 6:00:18 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/1/11 8:30:17 PM Page 9

water 11/1/11 11:00:17 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/2/11 4:00:16 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/2/11 5:30:16 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/2/11 9:00:15 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/2/11 11:15:15 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/2/11 1:30:14 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/2/11 3:45:14 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/2/11 6:00:13 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/2/11 8:30:13 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/2/11 11:00:13 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/3/11 4:00:12 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	
11/3/11 5:30:12 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/3/11 9:00:11 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/3/11 11:15:11 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/3/11 1:30:10 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/3/11 3:45:10 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/3/11 6:00:09 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/3/11 8:30:09 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/3/11 11:00:09 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/4/11 4:00:08 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/4/11 5:30:08 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/4/11 9:00:07 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/4/11 11:15:07 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/4/11 1:30:06 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/4/11 3:45:06 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/4/11 6:00:06 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/4/11 8:30:05 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/4/11 11:00:05 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/5/11 4:00:04 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/5/11 5:30:04 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/5/11 9:00:03 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	Page 10

Pressure at location Chrome South Scrubber is 2.87 inch of 11/5/11 11:15:03 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/5/11 1:30:02 PM water 11/5/11 3:45:02 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/5/11 6:00:01 PM water 11/5/11 8:30:01 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/5/11 11:00:01 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/6/11 4:00:00 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/6/11 5:30:59 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/6/11 9:00:59 AM water 11/6/11 11:15:58 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/6/11 1:30:58 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/6/11 3:45:58 PM water 11/6/11 6:00:57 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/6/11 8:30:57 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/6/11 11:00:56 PM water 11/7/11 4:00:56 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/7/11 5:30:55 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/7/11 9:00:54 AM water 11/7/11 11:15:54 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/7/11 1:30:54 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/7/11 3:45:53 PM water 11/7/11 6:00:53 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/7/11 8:30:52 PM water 11/7/11 11:00:52 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/8/11 4:00:51 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/8/11 5:30:51 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/8/11 9:00:50 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/8/11 11:15:50 AM water 11/8/11 1:30:49 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/8/11 3:45:49 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/8/11 6:00:49 PM water 11/8/11 8:30:48 PM Pressure at location Chrome South Scrubber is 2.87 inch of Page 11

water	
11/8/11 11:00:48 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/9/11 4:00:47 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/9/11 5:30:47 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/9/11 9:00:46 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/9/11 11:15:46 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/9/11 1:30:45 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	
11/9/11 3:45:45 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/9/11 6:00:45 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/9/11 8:30:44 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/9/11 11:00:44 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/10/11 4:00:43 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/10/11 5:30:43 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/10/11 9:00:42 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/10/11 11:15:42 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/10/11 1:30:41 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/10/11 3:45:41 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/10/11 6:00:41 PM water	
11/10/11 8:30:40 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/10/11 11:00:40 PM water	
11/11/11 4:00:39 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
11/11/11 5:30:39 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/11/11 9:00:38 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/11/11 11:15:38 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/11/11 1:30:37 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/11/11 3:45:37 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/11/11 6:00:36 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/11/11 8:30:36 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/11/11 11:00:35 PM	
water 11/12/11 4:00:35 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	
11/12/11 5:30:34 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/12/11 9:00:34 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
	Page 12

Pressure at location Chrome South Scrubber is 2.87 inch of 11/12/11 11:15:33 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/12/11 1:30:33 PM water 11/12/11 3:45:33 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/12/11 6:00:32 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/12/11 8:30:32 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/12/11 11:00:31 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/13/11 4:00:30 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/13/11 5:30:30 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/13/11 9:00:29 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/13/11 11:15:29 AM water 11/13/11 1:30:28 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/13/11 3:45:28 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/13/11 6:00:28 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/13/11 8:30:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/13/11 11:00:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/14/11 4:00:26 AM water 11/14/11 5:30:26 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/14/11 9:00:25 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/14/11 11:15:25 AM water 11/14/11 1:30:24 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/14/11 3:45:24 PM water 11/14/11 6:00:24 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/14/11 8:30:23 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/14/11 11:00:23 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/15/11 4:00:22 AM water 11/15/11 5:30:22 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/15/11 9:00:21 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/15/11 11:15:21 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/15/11 1:30:20 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/15/11 3:45:20 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/15/11 6:00:20 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/15/11 8:30:19 PM Page 13

water		•
	11:00:19 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
11/16/11	4:00:18 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
•	5:30:18 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
	9:00:17 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/16/11	11:15:17 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
	1:30:16 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/16/11	3:45:16 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/16/11	6:00:15 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/16/11	8:30:15 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/16/11	11:00:15 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/17/11	4:00:14 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/17/11	5:30:14 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	9:00:13 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/17/11	11:15:13 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/17/11	1:30:12 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	3:45:12 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	6:00:11 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	8:30:11 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	11:00:10 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	4:00:10 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	5:30:09 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	9:00:09 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	11:15:08 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	1:30:08 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	3:45:08 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	6:00:07 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water		Pressure at location Chrome South Scrubber is 2.87 inch of
water	8:30:07 PM	
water	11:00:06 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	4:00:05 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	5:30:05 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
11/19/11 water	9:00:05 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
		Dana 14

Pressure at location Chrome South Scrubber is 2.87 inch of 11/19/11 11:15:04 AM water 11/19/11 1:30:04 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/19/11 3:45:04 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/19/11 6:00:03 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/19/11 8:30:03 PM water 11/19/11 11:00:02 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/20/11 4:00:01 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/20/11 5:30:01 AM water 11/20/11 9:00:00 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/20/11 11:15:00 AM water 11/20/11 1:30:00 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/20/11 3:45:59 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/20/11 6:00:59 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/20/11 8:30:59 PM water 11/20/11 11:00:58 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/21/11 4:00:57 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/21/11 5:30:57 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/21/11 9:00:57 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/21/11 11:15:56 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/21/11 1:30:56 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/21/11 3:45:56 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/21/11 6:00:55 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/21/11 8:30:55 PM water 11/21/11 11:00:54 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/22/11 4:00:53 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/22/11 5:30:53 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/22/11 9:00:53 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/22/11 11:15:52 AM water 11/22/11 1:30:52 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/22/11 3:45:51 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/22/11 6:00:51 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/22/11 8:30:51 PM Page 15

water Pressure at location Chrome North Scrubber is 2.18 inch of 11/22/11 11:00:50 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/23/11 4:00:49 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/23/11 5:30:49 AM water 11/23/11 9:00:49 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/23/11 11:15:48 AM water 11/23/11 1:30:48 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/23/11 3:45:48 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/23/11 6:00:47 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/23/11 8:30:47 PM water 11/23/11 11:00:46 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/24/11 4:00:45 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/24/11 5:30:45 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/24/11 9:00:44 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/24/11 11:15:44 AM water 11/24/11 1:30:44 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/24/11 3:45:44 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/24/11 6:00:43 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/24/11 8:30:43 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/24/11 11:00:42 PM water 11/25/11 4:00:41 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/25/11 5:30:41 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/25/11 9:00:40 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/25/11 11:15:40 AM water 11/25/11 1:30:40 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/25/11 3:45:39 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/25/11 6:00:39 PM water 11/25/11 8:30:38 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/25/11 11:00:38 PM water 11/26/11 4:00:37 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/26/11 5:30:37 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/26/11 9:00:36 AM Pressure at location Chrome North Scrubber is 2.18 inch of water

Pressure at location Chrome South Scrubber is 2.87 inch of 11/26/11 11:15:36 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/26/11 1:30:35 PM water 11/26/11 3:45:35 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/26/11 6:00:35 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/26/11 8:30:34 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/26/11 11:00:34 PM Pressure at location Chrome North Scrubber is 2.18 inch of 11/27/11 4:00:33 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/27/11 5:30:33 AM water 11/27/11 9:00:32 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 11/27/11 11:15:32 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 11/27/11 1:30:32 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/27/11 3:45:31 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/27/11 6:00:31 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/27/11 8:30:30 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/27/11 11:00:30 PM water 11/28/11 4:00:29 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/28/11 5:30:29 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/28/11 9:00:28 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/28/11 11:15:28 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/28/11 1:30:28 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/28/11 3:45:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/28/11 6:00:27 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/28/11 8:30:27 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/28/11 11:00:26 PM water 11/29/11 4:00:25 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 11/29/11 5:30:25 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/29/11 9:00:24 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 11/29/11 11:15:24 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 11/29/11 1:30:24 PM water 11/29/11 3:45:23 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 11/29/11 6:00:23 PM water 11/29/11 8:30:22 PM Pressure at location Chrome South Scrubber is 2.87 inch of Page 17

water 11/29/11 11:00:22 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/30/11 4:00:21 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/30/11 5:30:21 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/30/11 9:00:20 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/30/11 11:15:20 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/30/11 1:30:20 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/30/11 3:45:19 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 11/30/11 6:00:19 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 11/30/11 8:30:19 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
11/30/11 11:00:18 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/1/11 4:00:17 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/1/11 5:30:17 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/1/11 6:00:20 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/1/11 8:30:19 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/1/11 11:00:19 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/2/11 4:00:18 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/2/11 5:30:18 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/2/11 9:00:17 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/2/11 11:15:17 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/2/11 1:30:17 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/2/11 3:45:16 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/2/11 6:00:16 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/2/11 8:30:15 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/2/11 11:00:15 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/3/11 4:00:14 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/3/11 5:30:14 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/3/11 9:00:13 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/3/11 11:15:13 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/3/11 1:30:12 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/3/11 3:45:12 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/3/11 6:00:12 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
	Dago 10

12/3/11 8:30:11 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/3/11 11:00:11 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/4/11 4:00:10 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/4/11 5:30:10 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/4/11 9:00:09 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/4/11 11:15:09 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/4/11 1:30:08 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/4/11 3:45:08 PM water 12/4/11 6:00:08 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/4/11 8:30:07 PM water 12/4/11 11:00:07 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/5/11 4:00:06 AM water 12/5/11 5:30:06 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/5/11 9:00:05 AM water 12/5/11 11:15:05 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/5/11 1:30:04 PM water 12/5/11 3:45:04 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/5/11 6:00:04 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/5/11 8:30:03 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/5/11 11:00:03 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/6/11 4:00:02 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/6/11 5:30:02 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/6/11 9:00:01 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/6/11 11:15:01 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/6/11 1:30:00 PM water 12/6/11 3:45:00 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/6/11 6:00:59 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/6/11 8:30:59 PM water 12/6/11 11:00:59 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/7/11 4:00:58 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/7/11 5:30:57 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/7/11 9:00:57 AM Pressure at location Chrome North Scrubber is 2.18 inch of Page 19

water 12/7/11 11:15:57 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/7/11 1:30:56 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/7/11 3:45:56 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/7/11 6:00:56 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	
12/7/11 8:30:55 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/7/11 11:00:55 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/8/11 4:00:54 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/8/11 5:30:54 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/8/11 9:00:53 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/8/11 11:15:53 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/8/11 1:30:52 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/8/11 3:45:52 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/8/11 6:00:52 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/8/11 8:30:51 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/8/11 11:00:51 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/9/11 4:00:50 Am	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/9/11 5:30:50 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/9/11 9:00:49 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/9/11 11:15:49 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/9/11 1:30:49 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/9/11 3:45:48 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water	
12/9/11 6:00:48 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/9/11 8:30:47 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/9/11 11:00:47 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/10/11 4:00:46 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/10/11 5:30:46 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/10/11 9:00:45 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/10/11 11:15:45 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/10/11 1:30:44 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/10/11 3:45:44 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/10/11 6:00:44 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	Page 20

Pressure at location Chrome South Scrubber is 2.87 inch of 12/10/11 8:30:43 PM water 12/10/11 11:00:43 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/11/11 4:00:42 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/11/11 5:30:42 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/11/11 9:00:41 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/11/11 11:15:41 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/11/11 1:30:40 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/11/11 3:45:40 PM water 12/11/11 6:00:40 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/11/11 8:30:39 PM water 12/11/11 11:00:39 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/12/11 4:00:38 AM water 12/12/11 5:30:38 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/12/11 9:00:38 AM water 12/12/11 11:15:37 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/12/11 1:30:37 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/12/11 3:45:36 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/12/11 6:00:36 PM water 12/12/11 8:30:36 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/12/11 11:00:35 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/13/11 4:00:34 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/13/11 5:30:34 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/13/11 9:00:34 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/13/11 11:15:33 AM water 12/13/11 1:30:33 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/13/11 3:45:33 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/13/11 6:00:32 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/13/11 8:30:32 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/13/11 11:00:31 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/14/11 4:00:31 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/14/11 5:30:30 AM water 12/14/11 9:00:30 AM Pressure at location Chrome North Scrubber is 2.18 inch of Page 21

	2011-Q4Log.txt
water 12/14/11 11:15:29 AM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/14/11 1:30:29 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/14/11 3:45:29 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/14/11 6:00:28 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/14/11 8:30:28 PM water	Pressure at location Chrome South Scrubber is 2.87 inch of
12/14/11 11:00:27 PM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/15/11 4:00:26 AM water	Pressure at location Chrome North Scrubber is 2.18 inch of
12/15/11 5:30:26 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/15/11 9:00:26 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/15/11 11:15:25 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/15/11 1:30:25 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/15/11 3:45:24 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/15/11 6:00:24 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/15/11 8:30:24 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/15/11 11:00:23 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/16/11 4:00:22 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/16/11 5:30:22 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/16/11 9:00:21 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/16/11 11:15:21 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/16/11 1:30:21 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/16/11 3:45:20 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/16/11 6:00:20 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/16/11 8:30:20 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/16/11 11:00:19 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/17/11 4:00:19 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/17/11 5:30:18 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/17/11 9:00:18 AM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/17/11 11:15:17 AM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/17/11 1:30:17 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water 12/17/11 3:45:17 PM	Pressure at location Chrome South Scrubber is 2.87 inch of
water 12/17/11 6:00:16 PM	Pressure at location Chrome North Scrubber is 2.18 inch of
water	Page 22

Pressure at location Chrome South Scrubber is 2.87 inch of 12/17/11 8:30:16 PM water 12/17/11 11:00:15 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/18/11 4:00:14 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/18/11 5:30:14 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/18/11 9:00:14 AM water 12/18/11 11:15:13 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/18/11 1:30:13 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/18/11 3:45:13 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/18/11 6:00:12 PM water 12/18/11 8:30:12 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/18/11 11:00:11 PM water 12/19/11 4:00:10 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/19/11 5:30:10 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/19/11 9:00:10 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/19/11 11:15:09 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/19/11 1:30:09 PM water 12/19/11 3:45:09 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/19/11 6:00:08 PM water 12/19/11 8:30:08 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/19/11 11:00:08 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/20/11 4:00:07 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/20/11 5:30:07 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/20/11 9:00:06 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/20/11 11:15:06 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/20/11 1:30:05 PM water 12/20/11 3:45:05 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/20/11 6:00:05 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/20/11 8:30:04 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/20/11 11:00:04 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/21/11 4:00:03 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/21/11 5:30:03 AM water 12/21/11 9:00:02 AM Pressure at location Chrome North Scrubber is 2.18 inch of Page 23

water Pressure at location Chrome South Scrubber is 2.87 inch of 12/21/11 11:15:02 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/21/11 1:30:02 PM water 12/21/11 3:45:01 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/21/11 6:00:01 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/21/11 8:30:00 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/21/11 11:00:00 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/22/11 4:00:59 AM water 12/22/11 5:30:59 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/22/11 9:00:58 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/22/11 11:15:58 AM water 12/22/11 1:30:58 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/22/11 3:45:57 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/22/11 6:00:57 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/22/11 8:30:56 PM water 12/22/11 11:00:56 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/23/11 4:00:55 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/23/11 5:30:55 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/23/11 9:00:54 AM water 12/23/11 11:15:54 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/23/11 1:30:53 PM water 12/23/11 3:45:53 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/23/11 6:00:52 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/23/11 8:30:52 PM water 12/23/11 11:00:52 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/24/11 4:00:51 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/24/11 5:30:50 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/24/11 9:00:50 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/24/11 11:15:50 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/24/11 1:30:49 PM water 12/24/11 3:45:49 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/24/11 6:00:49 PM water

Pressure at location Chrome South Scrubber is 2.87 inch of 12/24/11 8:30:48 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/24/11 11:00:48 PM water 12/25/11 4:00:47 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/25/11 5:30:47 AM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/25/11 9:00:47 AM water 12/25/11 11:15:46 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/25/11 1:30:46 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/25/11 3:45:46 PM water 12/25/11 6:00:45 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/25/11 8:30:45 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/25/11 11:00:44 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/26/11 4:00:44 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/26/11 5:30:43 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/26/11 9:00:43 AM water 12/26/11 11:15:42 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/26/11 1:30:42 PM water 12/26/11 3:45:41 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/26/11 6:00:41 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/26/11 8:30:41 PM water 12/26/11 11:00:40 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/27/11 4:00:39 AM water 12/27/11 5:30:39 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/27/11 9:00:38 AM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/27/11 11:15:38 AM water 12/27/11 1:30:38 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/27/11 3:45:37 PM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/27/11 6:00:37 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/27/11 8:30:36 PM water 12/27/11 11:00:36 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/28/11 4:00:35 AM water 12/28/11 5:30:35 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/28/11 9:00:34 AM Pressure at location Chrome North Scrubber is 2.18 inch of Page 25

water 12/28/11 11:15:34 AM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/28/11 1:30:34 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/28/11 3:45:33 PM water 12/28/11 6:00:33 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/28/11 8:30:32 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/28/11 11:00:32 PM water 12/29/11 4:00:31 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/29/11 5:30:31 AM Pressure at location Chrome South Scrubber is 2.87 inch of 12/29/11 9:00:30 AM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/29/11 11:15:30 AM water 12/29/11 1:30:30 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome South Scrubber is 2.87 inch of 12/29/11 3:45:29 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/29/11 6:00:29 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/29/11 8:30:28 PM water 12/29/11 11:00:28 PM Pressure at location Chrome North Scrubber is 2.18 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/30/11 4:00:27 AM 12/30/11 5:30:27 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/30/11 9:00:26 AM water 12/30/11 11:15:26 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/30/11 1:30:26 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/30/11 3:45:25 PM water Pressure at location Chrome North Scrubber is 2.18 inch of 12/30/11 6:00:25 PM water Pressure at location Chrome South Scrubber is 2.87 inch of 12/30/11 8:30:24 PM water 12/30/11 11:00:24 PM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/31/11 4:00:23 AM Pressure at location Chrome North Scrubber is 2.18 inch of Pressure at location Chrome South Scrubber is 2.87 inch of 12/31/11 5:30:23 AM water 12/31/11 9:00:22 AM Pressure at location Chrome North Scrubber is 2.18 inch of water 12/31/11 11:15:22 AM Pressure at location Chrome South Scrubber is 2.87 inch of water Pressure at location Chrome North Scrubber is 2.18 inch of 12/31/11 1:30:21 PM water 12/31/11 3:45:21 PM Pressure at location Chrome South Scrubber is 2.87 inch of water 12/31/11 6:00:21 PM Pressure at location Chrome North Scrubber is 2.18 inch of water

2011-Q4Log.txt Pressure at location Chrome South Scrubber is 2.87 inch of 12/31/11 8:30:20 PM water
12/31/11 11:00:20 PM Pressure at location Chrome North Scrubber is 2.18 inch of water

Reports Included FER:	✓ ES: □ EIS	: 🗹 EIS Status Subi	mitted R	Reporting L	.evel	: Emissions Unit(s)	operated in 2010		
Facility Emissions									
	Criteria Air Po	llutant				Em	issions Reporte	d	· ·
Pollutant			Code		\$	Fugitive Amount	Stack Amount	Total	Unit
PE (Cond) - Primary PM Con	densible Portion Only (A	II Less than 1 Micron)	PM-CON	(Locate)	1 :	0.	0.	0.	TON
SO2 - Sulfur Dioxide			SO2	(Locate)	1	0.	0-	0.	TON
NOx - Nitrogen Oxides			NOX	(Locate)	1	0.	0.	0.	TON
Organic Compounds			ос	(Locate)	1	10.87	0.	10.87	TON
Pb - Lead			7439921	(Locate)	1	0.	0.	0.	TON
PE (Filt) - Primary PM, Filtera	ble Portion Only		PM-FIL	(Locate)	1	0.	0.005205	0.005205	TON
PM10 (Filt) - Primary PM10, F	PM10-FIL	(Locate)		0.	0.005205	0.005205	TON:		
PM2.5 (FILT) - Primary PM2.5	PM25-FIL	(Locate)	į "	0.	0.004945	0.004945	TON:		
VOC - Volatile Organic Compo	ounds		VOC	(Locate)		10.87	0.	10.87	TON
Ammonia			NH3	(Locate)		0.	0.	0.	TON
CO - Carbon Monoxide			co	(Locate)	$\perp$	0.	0.	0.	TON
		(Printable view) (Exp	ort to excel)	1	agains 10	Total Chargea	ble FER Pollutar	its: 10.875	2 Ton
The following information was dev commitments. You may modify the report submission. For more information Hazardous A	ese pollutant emission calc	ulations, at the process level, if utants are considered Greenho	you have more acc	urate informa		•	of these values as	_	
Pollutant	Code	Туре	5	Fugitive	Amo		k Amount	Total	Units
r unutant				N. C. C.		7 to 2 to	6 70 11 1141	William Co.	

**₹** Attachments

Attachment ID	Attachment Type	Description	Trade Secret Document	Trade secret Justification	Uploaded By	Upload Date
	and the state of t		(Printable view) (Exp	ort to excel)		

(Show Me Reporting Steps) (Excluded/Included Emissions Units) (Create Revised Rpt)

2011

## GOODRICH

# TRICHLORETHYLENE ADDITIONS

Date of Add	Starting Amount	Ending Amount	Comments	Initials
		SA SECTION STATE OF THE SECTIO	明さればは発出者である事が大学者の	STATE STATE AND A STATE OF THE
10-6-11 11-21-11 12-16-11	8,340 8,340 8,390 8,400 8,400 8,400	8253 834 n 8390 8490 8533 8550	956AL 5067 100 CAL 33 GAL	RA RA S.C.
			-	
				-

	Date	Start Meter (gals)	Adds from Tank (gals)	Adds from Drums (gals)	Totals Adds (lbs)	Totals Adds (kgs)	Waste Shipments (lbs)	Waste Shipments (kg)	Cumulative Consumption (lbs)
	Jan '11	7,980	0	0	0.0	0.0		0.0	
	Feb	7,980	0	0	0.0	0.0		0.0	
	Mar	7,980	0	0	0.0	0.0		0.0	
	Apr	7,980	0	0	0.0	0.0		0.0	
	May	7,980	0	0	0.0	0.0	304	69.0	
0044	Jun	7,980	0	0	0.0	0.0	-2	0.0	
2011	Jul	7,980	0	0	0.0	0.0		0.0	
1	Aug	7,980	70	0	849.8	385.6	2,017	457.6	
l i	Sep	8,050	290	0	3,520.6		642	145.6	
	Oct	8,340	50	0	607.0	275.4		0.0	
	Nov	8,390	133	0	1,614.6			0.0	
	Dec	8,523	37	0	449.2	203.8	397	90.1	5,361.2
	Jan '12	8,560	90	0	1,092.6			0.0	
	Feb	8,650	346	0	4,200.4	1,905.8		0.0	
1	Mar	8,996	254	0	3,083.6	1,399.1	6,679	1,515.2	
	Apr	9,250	-9,250	0	-112,295.0	-50,950.5	1,214	275.4	The second secon
	May				0.0	1000		0.0	
0040	Jun				0.0			0.0	
2012	Jul				0.0			0.0	
5	Aug				0.0	9150		0.0	
	Sep			2000	0.0			0.0	
	Oct				0.0		- ×	0.0	
1	Nov		ezarese i	3.591	0.0			0.0	
0	Dec		*		0.0	77-5 10		0.0	-107,864.9

# ANNUAL VAPOR DEGREASER FOR REPORTING YEAR 2011 VAPOR DEGREASER L003

For: Goodrich Corporation - Plating Operations

Facility ID: 13-18-00-5949

RE: Reporting requirements of Title V Permit to Operate

All operators of the vapor degreaser (Source ID L003) have received training on the proper operation of the solvent cleaning machines and their control devices sufficient to pass the test required pursuant to 40 CFR 60.463(d)(10).

Training has been documented and filed.

The total estimated solvent consumption for reporting year 2011 is 0.9 Tons.

Note: This vapor degreaser system was taken out of service in September, 2010, following the discovery of leaks in the tank. Repair began in June, 2011, and was completed in September, 2011. TCE consumption for 2011 is significant below historical usage rates (approximately 8-10 tons) due to the system being physically out of service for over 9 months, being administratively out of service for an additional month while the process was being recertified by our customers, and because of reduced production demands. Systemic improvements implemented during the repair may demonstrate that the current system is also susceptible to lower evaporative losses than the old system, but at this time, there is not a sufficient amount of data.

### OPERATIONAL AND MAINTENANCE PLAN

Goodrich Aerospace Plating Operation 2800 East 33rd Street Cleveland, Ohio 44115

## **Operation & Maintenance Criteria**

#### Hard Chrome Fume Scrubber

Pass	Fail		Equipment	Criteria	Frequency
۵	٥	a)	Nozzles	Uniformity of Spray	Quarterly
	0	b)	Piping	Chemical Attack/Leaks	Quarterly
		c)	Mesh Pads	Acid build up/breakthrough	Quarterly
۵	٥	d)	Housing	Chemical Attack	Quarterly
۵	۵	e)	Drains	Check for flow	Quarterly
	0	f)	Remote Tank	Check water level	Quarterly
۵	٥	g)	No Leaks	No leaks	Quarterly

#### Centrifugal Fan

Pass	Fail		Equipment	Criteria	Frequency
		a)	Fan Operation	Is unit running	Quarterly
۵	ū	b)	Stack Vibration	Excessive Stack Motion	Quarterly
۵		c)	Bearings	Need greased	Quarterly
۵	۵	d)	Belts	Tightness/slippage	Quarterly
۵		e)	Guards	In place	Quarterly
		f)	Voltage	460 volts	Quarterly

Note that wash down of composite mesh pads occurs once (1) every (8) hours in accordance with manufacturers specifications.

## Procedures to Prevent Malfunction(s)

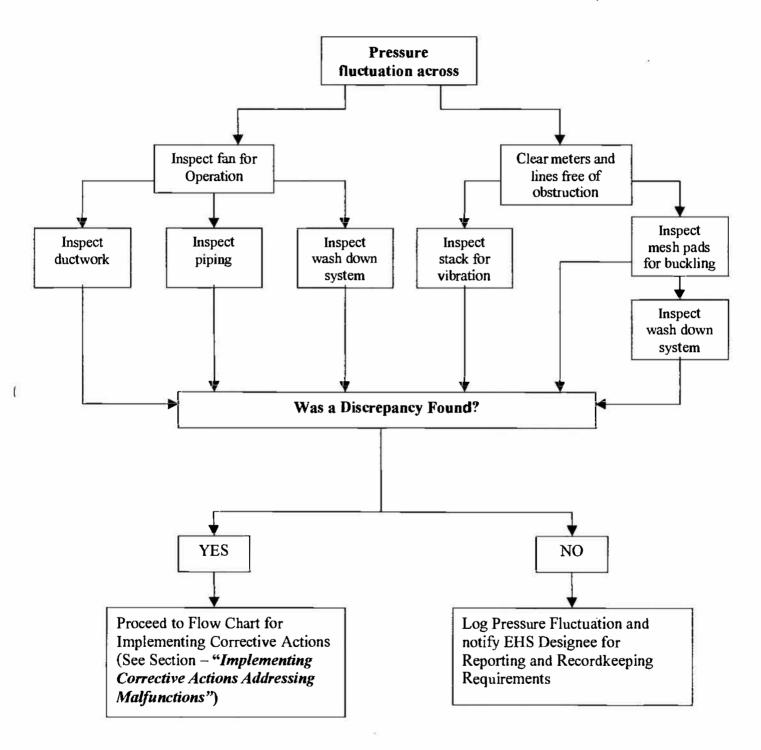
Goodrich Plating Operation will utilize a computerized monitoring system, in accordance with 40CFR 63.343(c)(ii), to alert the appropriate personnel of a malfunction in the scrubber system. This system is located in the Plating Communication room and will alert the user of a fluctuation in the water column pressure across the scrubber system. This fluctuation will alert the user to inspect the scrubber system for malfunction(s) due to poor maintenance.

Once the user is alerted they can read the computer screen to see exactly what time the pressure fluctuation occurred as well as the new pressure reading. This information will be used in reporting purposes and emission determinations.

#### OPERATIONAL AND MAINTENANCE PLAN

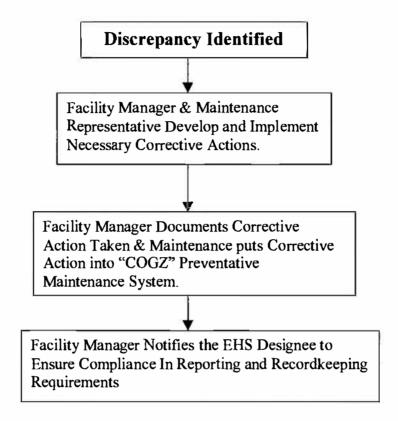
Goodrich Aerospace Plating Operation 2800 East 33rd Street Cleveland, Ohio 44115

All pressure drop fluctuations will be addressed by the maintenance department via the facilities manager. Once the determination has been made for the pressure fluctuation the corrective action will be performed to ensure proper working order of the scrubber system.


## Systematic Procedure for Identifying Malfunction(s)

Once the computer has alarmed and user has received the information, the following protocol will be met;

- 1) The facility's manager will be notified that the fluctuation in the pressure drop across the system has occurred.
- 2) Go to the control panel to inspect photohelic meters. If the meter is low then inspect the centrifugal fan. However, if the meter is high disconnect photohelic cells and unclog lines; (also inspect the mesh pads for excessive buckling)
- 3) Inspect the ductwork, pipes, and wash down system for leaks, drips, vibrations and operability.


See Flow Chart Below on Next Page

Goodrich Aerospace Plating Operation 2800 East 33rd Street Cleveland, Ohio 44115



Goodrich Aerospace Plating Operation 2800 East 33rd Street Cleveland, Ohio 44115

## Implementing Corrective Actions Addressing Malfunction(s)



## Reporting of the O&M Plan

This plan is being submitted in accordance with 40 CFR 63.342(f)(3) in an effort to assure that procedures specified within are consistent as required by paragraph (f)(3)(i) of 40 CFR 63.342. However, if periods of malfunction are inconsistent, Goodrich Plating Operation shall record the action taken for the event and shall report by phone such actions within two (2) working days after commencing actions inconsistent with the plan.

A letter shall follow the phone report within seven (7) working days after the end of the event, unless Goodrich Plating Operation makes alternative reporting arrangement, in advance, with the Administrator.

## OPERATIONAL AND MAINTENANCE PLAN

Goodrich Aerospace Plating Operation 2800 East 33rd Street Cleveland, Ohio 44115

Additionally, Goodrich Plating Operation will revise the O&M Plan within 45 days after such an event occurs. The revised plan shall include procedures for operating and maintaining the process equipment, add-on air pollution control device, and monitoring equipment during similar malfunction events, as well as a program for corrective action for such events.

#### Recordkeeping

The following records will be maintained for not less than five (5) years from the date of completion;

- 1) All inspection checklists referring to maintenance or operability
- 2) Maintenance performed on any scrubber equipment
- 3) Any malfunction report
- 4) Test reports of performance
- 5) Measurements for determining performance reports
- 6) Monitoring data, (i.e. computer pressure drop readings)
- 7) Excess mission data, (i.e. time, dates, process, equipment..)
- 8) Total process operating time of the scrubbers during reporting period
- 9) All records, forms and reports sent to the Ohio EPA or any other regulatory agency

#### 2011-Q2Alarm.txt

```
5/14/11 6:00:22 PM Reading from location Chrome North Scrubber is 3.74 , set m 6/10/11 1:00:21 PM Reading from location Chrome North Scrubber is 4.08 , set m 6/10/11 1:15:32 AM Reading from location Chrome South Scrubber is 0.45 , set m 6/10/11 8:30:30 PM Reading from location Chrome South Scrubber is 0.32 , set m 6/11/11 5:30:28 AM Reading from location Chrome South Scrubber is 0.45 , set m 6/11/11 1:15:27 AM Reading from location Chrome South Scrubber is 0.31 , set m 6/11/11 8:30:26 PM Reading from location Chrome South Scrubber is 0.39 , set m 6/12/11 5:30:25 AM Reading from location Chrome South Scrubber is 0.39 , set m Reading from location Chrome South Scrubber is 0.39 , set m 6/12/11 11:15:24 AM Reading from location Chrome South Scrubber is 0.32 , set
```